| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvpo | Structured version Visualization version Unicode version | ||
| Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.) |
| Ref | Expression |
|---|---|
| cnvpo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 3064 |
. . . . . . 7
| |
| 2 | vex 3203 |
. . . . . . . . . . . 12
| |
| 3 | 2, 2 | brcnv 5305 |
. . . . . . . . . . 11
|
| 4 | id 22 |
. . . . . . . . . . . 12
| |
| 5 | 4, 4 | breq12d 4666 |
. . . . . . . . . . 11
|
| 6 | 3, 5 | syl5bb 272 |
. . . . . . . . . 10
|
| 7 | 6 | notbid 308 |
. . . . . . . . 9
|
| 8 | 7 | cbvralv 3171 |
. . . . . . . 8
|
| 9 | vex 3203 |
. . . . . . . . . . . 12
| |
| 10 | 2, 9 | brcnv 5305 |
. . . . . . . . . . 11
|
| 11 | vex 3203 |
. . . . . . . . . . . 12
| |
| 12 | 9, 11 | brcnv 5305 |
. . . . . . . . . . 11
|
| 13 | 10, 12 | anbi12ci 734 |
. . . . . . . . . 10
|
| 14 | 2, 11 | brcnv 5305 |
. . . . . . . . . 10
|
| 15 | 13, 14 | imbi12i 340 |
. . . . . . . . 9
|
| 16 | 15 | ralbii 2980 |
. . . . . . . 8
|
| 17 | 8, 16 | anbi12i 733 |
. . . . . . 7
|
| 18 | 1, 17 | bitr2i 265 |
. . . . . 6
|
| 19 | 18 | ralbii 2980 |
. . . . 5
|
| 20 | r19.26 3064 |
. . . . . . 7
| |
| 21 | ralidm 4075 |
. . . . . . . . 9
| |
| 22 | rzal 4073 |
. . . . . . . . . . 11
| |
| 23 | rzal 4073 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | 2thd 255 |
. . . . . . . . . 10
|
| 25 | r19.3rzv 4064 |
. . . . . . . . . . 11
| |
| 26 | 25 | ralbidv 2986 |
. . . . . . . . . 10
|
| 27 | 24, 26 | pm2.61ine 2877 |
. . . . . . . . 9
|
| 28 | 21, 27 | bitr2i 265 |
. . . . . . . 8
|
| 29 | 28 | anbi1i 731 |
. . . . . . 7
|
| 30 | 20, 29 | bitri 264 |
. . . . . 6
|
| 31 | r19.26 3064 |
. . . . . . 7
| |
| 32 | 31 | ralbii 2980 |
. . . . . 6
|
| 33 | r19.26 3064 |
. . . . . 6
| |
| 34 | 30, 32, 33 | 3bitr4i 292 |
. . . . 5
|
| 35 | ralcom 3098 |
. . . . 5
| |
| 36 | 19, 34, 35 | 3bitr4i 292 |
. . . 4
|
| 37 | 36 | ralbii 2980 |
. . 3
|
| 38 | ralcom 3098 |
. . 3
| |
| 39 | ralcom 3098 |
. . 3
| |
| 40 | 37, 38, 39 | 3bitr4i 292 |
. 2
|
| 41 | df-po 5035 |
. 2
| |
| 42 | df-po 5035 |
. 2
| |
| 43 | 40, 41, 42 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-po 5035 df-cnv 5122 |
| This theorem is referenced by: cnvso 5674 fimax2g 8206 fin23lem40 9173 isfin1-3 9208 |
| Copyright terms: Public domain | W3C validator |