MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralnex2 Structured version   Visualization version   Unicode version

Theorem ralnex2 3045
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
ralnex2  |-  ( A. x  e.  A  A. y  e.  B  -.  ph  <->  -. 
E. x  e.  A  E. y  e.  B  ph )

Proof of Theorem ralnex2
StepHypRef Expression
1 notnotb 304 . 2  |-  ( A. x  e.  A  A. y  e.  B  -.  ph  <->  -. 
-.  A. x  e.  A  A. y  e.  B  -.  ph )
2 notnotb 304 . . . 4  |-  ( ph  <->  -. 
-.  ph )
322rexbii 3042 . . 3  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  -.  -.  ph )
4 rexnal2 3043 . . 3  |-  ( E. x  e.  A  E. y  e.  B  -.  -.  ph  <->  -.  A. x  e.  A  A. y  e.  B  -.  ph )
53, 4bitr2i 265 . 2  |-  ( -. 
A. x  e.  A  A. y  e.  B  -.  ph  <->  E. x  e.  A  E. y  e.  B  ph )
61, 5xchbinx 324 1  |-  ( A. x  e.  A  A. y  e.  B  -.  ph  <->  -. 
E. x  e.  A  E. y  e.  B  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196   A.wral 2912   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ral 2917  df-rex 2918
This theorem is referenced by:  r2exlem  3059  axtgupdim2  25370  uhgrvd00  26430  fourierdlem42  40366
  Copyright terms: Public domain W3C validator