MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resasplit Structured version   Visualization version   Unicode version

Theorem resasplit 6074
Description: If two functions agree on their common domain, express their union as a union of three functions with pairwise disjoint domains. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
resasplit  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )

Proof of Theorem resasplit
StepHypRef Expression
1 fnresdm 6000 . . . 4  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
2 fnresdm 6000 . . . 4  |-  ( G  Fn  B  ->  ( G  |`  B )  =  G )
3 uneq12 3762 . . . 4  |-  ( ( ( F  |`  A )  =  F  /\  ( G  |`  B )  =  G )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
41, 2, 3syl2an 494 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G ) )
543adant3 1081 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
6 simp3 1063 . . . . . . 7  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )
76uneq1d 3766 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
87uneq2d 3767 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B
) ) )  u.  ( ( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )  =  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
9 inundif 4046 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  =  A
109reseq2i 5393 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( F  |`  A )
11 resundi 5410 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )
1210, 11eqtr3i 2646 . . . . . 6  |-  ( F  |`  A )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )
13 incom 3805 . . . . . . . . . 10  |-  ( A  i^i  B )  =  ( B  i^i  A
)
1413uneq1i 3763 . . . . . . . . 9  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  ( ( B  i^i  A )  u.  ( B 
\  A ) )
15 inundif 4046 . . . . . . . . 9  |-  ( ( B  i^i  A )  u.  ( B  \  A ) )  =  B
1614, 15eqtri 2644 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  B
1716reseq2i 5393 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( G  |`  B )
18 resundi 5410 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
1917, 18eqtr3i 2646 . . . . . 6  |-  ( G  |`  B )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
2012, 19uneq12i 3765 . . . . 5  |-  ( ( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
218, 20syl6reqr 2675 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( F  |`  ( A  i^i  B
) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
22 un4 3773 . . . 4  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )
2321, 22syl6eq 2672 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) ) )
24 unidm 3756 . . . 4  |-  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  =  ( F  |`  ( A  i^i  B
) )
2524uneq1i 3763 . . 3  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
2623, 25syl6eq 2672 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
275, 26eqtr3d 2658 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    \ cdif 3571    u. cun 3572    i^i cin 3573    |` cres 5116    Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-dm 5124  df-res 5126  df-fun 5890  df-fn 5891
This theorem is referenced by:  fresaun  6075  fresaunres2  6076
  Copyright terms: Public domain W3C validator