| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resasplit | Structured version Visualization version Unicode version | ||
| Description: If two functions agree on their common domain, express their union as a union of three functions with pairwise disjoint domains. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| resasplit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm 6000 |
. . . 4
| |
| 2 | fnresdm 6000 |
. . . 4
| |
| 3 | uneq12 3762 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2an 494 |
. . 3
|
| 5 | 4 | 3adant3 1081 |
. 2
|
| 6 | simp3 1063 |
. . . . . . 7
| |
| 7 | 6 | uneq1d 3766 |
. . . . . 6
|
| 8 | 7 | uneq2d 3767 |
. . . . 5
|
| 9 | inundif 4046 |
. . . . . . . 8
| |
| 10 | 9 | reseq2i 5393 |
. . . . . . 7
|
| 11 | resundi 5410 |
. . . . . . 7
| |
| 12 | 10, 11 | eqtr3i 2646 |
. . . . . 6
|
| 13 | incom 3805 |
. . . . . . . . . 10
| |
| 14 | 13 | uneq1i 3763 |
. . . . . . . . 9
|
| 15 | inundif 4046 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqtri 2644 |
. . . . . . . 8
|
| 17 | 16 | reseq2i 5393 |
. . . . . . 7
|
| 18 | resundi 5410 |
. . . . . . 7
| |
| 19 | 17, 18 | eqtr3i 2646 |
. . . . . 6
|
| 20 | 12, 19 | uneq12i 3765 |
. . . . 5
|
| 21 | 8, 20 | syl6reqr 2675 |
. . . 4
|
| 22 | un4 3773 |
. . . 4
| |
| 23 | 21, 22 | syl6eq 2672 |
. . 3
|
| 24 | unidm 3756 |
. . . 4
| |
| 25 | 24 | uneq1i 3763 |
. . 3
|
| 26 | 23, 25 | syl6eq 2672 |
. 2
|
| 27 | 5, 26 | eqtr3d 2658 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-dm 5124 df-res 5126 df-fun 5890 df-fn 5891 |
| This theorem is referenced by: fresaun 6075 fresaunres2 6076 |
| Copyright terms: Public domain | W3C validator |