| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fresaun | Structured version Visualization version Unicode version | ||
| Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| fresaun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . . 4
| |
| 2 | inss1 3833 |
. . . 4
| |
| 3 | fssres 6070 |
. . . 4
| |
| 4 | 1, 2, 3 | sylancl 694 |
. . 3
|
| 5 | difss 3737 |
. . . . 5
| |
| 6 | fssres 6070 |
. . . . 5
| |
| 7 | 1, 5, 6 | sylancl 694 |
. . . 4
|
| 8 | simp2 1062 |
. . . . 5
| |
| 9 | difss 3737 |
. . . . 5
| |
| 10 | fssres 6070 |
. . . . 5
| |
| 11 | 8, 9, 10 | sylancl 694 |
. . . 4
|
| 12 | indifdir 3883 |
. . . . . 6
| |
| 13 | disjdif 4040 |
. . . . . . 7
| |
| 14 | 13 | difeq1i 3724 |
. . . . . 6
|
| 15 | 0dif 3977 |
. . . . . 6
| |
| 16 | 12, 14, 15 | 3eqtri 2648 |
. . . . 5
|
| 17 | 16 | a1i 11 |
. . . 4
|
| 18 | fun2 6067 |
. . . 4
| |
| 19 | 7, 11, 17, 18 | syl21anc 1325 |
. . 3
|
| 20 | indi 3873 |
. . . . 5
| |
| 21 | inass 3823 |
. . . . . . 7
| |
| 22 | disjdif 4040 |
. . . . . . . 8
| |
| 23 | 22 | ineq2i 3811 |
. . . . . . 7
|
| 24 | in0 3968 |
. . . . . . 7
| |
| 25 | 21, 23, 24 | 3eqtri 2648 |
. . . . . 6
|
| 26 | incom 3805 |
. . . . . . . 8
| |
| 27 | 26 | ineq1i 3810 |
. . . . . . 7
|
| 28 | inass 3823 |
. . . . . . . 8
| |
| 29 | 13 | ineq2i 3811 |
. . . . . . . 8
|
| 30 | in0 3968 |
. . . . . . . 8
| |
| 31 | 28, 29, 30 | 3eqtri 2648 |
. . . . . . 7
|
| 32 | 27, 31 | eqtri 2644 |
. . . . . 6
|
| 33 | 25, 32 | uneq12i 3765 |
. . . . 5
|
| 34 | un0 3967 |
. . . . 5
| |
| 35 | 20, 33, 34 | 3eqtri 2648 |
. . . 4
|
| 36 | 35 | a1i 11 |
. . 3
|
| 37 | fun2 6067 |
. . 3
| |
| 38 | 4, 19, 36, 37 | syl21anc 1325 |
. 2
|
| 39 | ffn 6045 |
. . . . 5
| |
| 40 | ffn 6045 |
. . . . 5
| |
| 41 | id 22 |
. . . . 5
| |
| 42 | resasplit 6074 |
. . . . 5
| |
| 43 | 39, 40, 41, 42 | syl3an 1368 |
. . . 4
|
| 44 | 43 | feq1d 6030 |
. . 3
|
| 45 | un12 3771 |
. . . . 5
| |
| 46 | 26 | uneq1i 3763 |
. . . . . . 7
|
| 47 | inundif 4046 |
. . . . . . 7
| |
| 48 | 46, 47 | eqtri 2644 |
. . . . . 6
|
| 49 | 48 | uneq2i 3764 |
. . . . 5
|
| 50 | undif1 4043 |
. . . . 5
| |
| 51 | 45, 49, 50 | 3eqtri 2648 |
. . . 4
|
| 52 | 51 | feq2i 6037 |
. . 3
|
| 53 | 44, 52 | syl6rbbr 279 |
. 2
|
| 54 | 38, 53 | mpbid 222 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-fun 5890 df-fn 5891 df-f 5892 |
| This theorem is referenced by: cvmliftlem10 31276 elmapresaun 37334 |
| Copyright terms: Public domain | W3C validator |