MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resin Structured version   Visualization version   Unicode version

Theorem resin 6158
Description: The restriction of a one-to-one onto function to an intersection maps onto the intersection of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resin  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) -1-1-onto-> ( C  i^i  D ) )

Proof of Theorem resin
StepHypRef Expression
1 resdif 6157 . . . 4  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( C 
\  D ) )
2 f1ofo 6144 . . . 4  |-  ( ( F  |`  ( A  \  B ) ) : ( A  \  B
)
-1-1-onto-> ( C  \  D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -onto-> ( C  \  D ) )
31, 2syl 17 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -onto-> ( C  \  D ) )
4 resdif 6157 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  ( A 
\  B ) ) : ( A  \  B ) -onto-> ( C 
\  D ) )  ->  ( F  |`  ( A  \  ( A  \  B ) ) ) : ( A 
\  ( A  \  B ) ) -1-1-onto-> ( C 
\  ( C  \  D ) ) )
53, 4syld3an3 1371 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  ( A  \  B ) ) ) : ( A 
\  ( A  \  B ) ) -1-1-onto-> ( C 
\  ( C  \  D ) ) )
6 dfin4 3867 . . . 4  |-  ( C  i^i  D )  =  ( C  \  ( C  \  D ) )
7 f1oeq3 6129 . . . 4  |-  ( ( C  i^i  D )  =  ( C  \ 
( C  \  D
) )  ->  (
( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) -1-1-onto-> ( C  i^i  D
)  <->  ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) -1-1-onto-> ( C 
\  ( C  \  D ) ) ) )
86, 7ax-mp 5 . . 3  |-  ( ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B
)
-1-1-onto-> ( C  i^i  D )  <-> 
( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) -1-1-onto-> ( C  \  ( C  \  D ) ) )
9 dfin4 3867 . . . 4  |-  ( A  i^i  B )  =  ( A  \  ( A  \  B ) )
10 f1oeq2 6128 . . . 4  |-  ( ( A  i^i  B )  =  ( A  \ 
( A  \  B
) )  ->  (
( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) -1-1-onto-> ( C  \  ( C  \  D ) )  <-> 
( F  |`  ( A  i^i  B ) ) : ( A  \ 
( A  \  B
) ) -1-1-onto-> ( C  \  ( C  \  D ) ) ) )
119, 10ax-mp 5 . . 3  |-  ( ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B
)
-1-1-onto-> ( C  \  ( C  \  D ) )  <-> 
( F  |`  ( A  i^i  B ) ) : ( A  \ 
( A  \  B
) ) -1-1-onto-> ( C  \  ( C  \  D ) ) )
129reseq2i 5393 . . . 4  |-  ( F  |`  ( A  i^i  B
) )  =  ( F  |`  ( A  \  ( A  \  B
) ) )
13 f1oeq1 6127 . . . 4  |-  ( ( F  |`  ( A  i^i  B ) )  =  ( F  |`  ( A  \  ( A  \  B ) ) )  ->  ( ( F  |`  ( A  i^i  B
) ) : ( A  \  ( A 
\  B ) ) -1-1-onto-> ( C  \  ( C 
\  D ) )  <-> 
( F  |`  ( A  \  ( A  \  B ) ) ) : ( A  \ 
( A  \  B
) ) -1-1-onto-> ( C  \  ( C  \  D ) ) ) )
1412, 13ax-mp 5 . . 3  |-  ( ( F  |`  ( A  i^i  B ) ) : ( A  \  ( A  \  B ) ) -1-1-onto-> ( C  \  ( C 
\  D ) )  <-> 
( F  |`  ( A  \  ( A  \  B ) ) ) : ( A  \ 
( A  \  B
) ) -1-1-onto-> ( C  \  ( C  \  D ) ) )
158, 11, 143bitrri 287 . 2  |-  ( ( F  |`  ( A  \  ( A  \  B
) ) ) : ( A  \  ( A  \  B ) ) -1-1-onto-> ( C  \  ( C 
\  D ) )  <-> 
( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) -1-1-onto-> ( C  i^i  D
) )
165, 15sylib 208 1  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) -1-1-onto-> ( C  i^i  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    \ cdif 3571    i^i cin 3573   `'ccnv 5113    |` cres 5116   Fun wfun 5882   -onto->wfo 5886   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator