| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdif | Structured version Visualization version Unicode version | ||
| Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| resdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun 6116 |
. . . . . 6
| |
| 2 | difss 3737 |
. . . . . . 7
| |
| 3 | fof 6115 |
. . . . . . . 8
| |
| 4 | fdm 6051 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
|
| 6 | 2, 5 | syl5sseqr 3654 |
. . . . . 6
|
| 7 | fores 6124 |
. . . . . 6
| |
| 8 | 1, 6, 7 | syl2anc 693 |
. . . . 5
|
| 9 | resres 5409 |
. . . . . . . 8
| |
| 10 | indif 3869 |
. . . . . . . . 9
| |
| 11 | 10 | reseq2i 5393 |
. . . . . . . 8
|
| 12 | 9, 11 | eqtri 2644 |
. . . . . . 7
|
| 13 | foeq1 6111 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
|
| 15 | 12 | rneqi 5352 |
. . . . . . . 8
|
| 16 | df-ima 5127 |
. . . . . . . 8
| |
| 17 | df-ima 5127 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3eqtr4i 2654 |
. . . . . . 7
|
| 19 | foeq3 6113 |
. . . . . . 7
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
|
| 21 | 14, 20 | bitri 264 |
. . . . 5
|
| 22 | 8, 21 | sylib 208 |
. . . 4
|
| 23 | funres11 5966 |
. . . 4
| |
| 24 | dff1o3 6143 |
. . . . 5
| |
| 25 | 24 | biimpri 218 |
. . . 4
|
| 26 | 22, 23, 25 | syl2anr 495 |
. . 3
|
| 27 | 26 | 3adant3 1081 |
. 2
|
| 28 | df-ima 5127 |
. . . . . . 7
| |
| 29 | forn 6118 |
. . . . . . 7
| |
| 30 | 28, 29 | syl5eq 2668 |
. . . . . 6
|
| 31 | df-ima 5127 |
. . . . . . 7
| |
| 32 | forn 6118 |
. . . . . . 7
| |
| 33 | 31, 32 | syl5eq 2668 |
. . . . . 6
|
| 34 | 30, 33 | anim12i 590 |
. . . . 5
|
| 35 | imadif 5973 |
. . . . . 6
| |
| 36 | difeq12 3723 |
. . . . . 6
| |
| 37 | 35, 36 | sylan9eq 2676 |
. . . . 5
|
| 38 | 34, 37 | sylan2 491 |
. . . 4
|
| 39 | 38 | 3impb 1260 |
. . 3
|
| 40 | 39 | f1oeq3d 6134 |
. 2
|
| 41 | 27, 40 | mpbid 222 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 |
| This theorem is referenced by: resin 6158 canthp1lem2 9475 subfacp1lem3 31164 subfacp1lem5 31166 |
| Copyright terms: Public domain | W3C validator |