MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressnop0 Structured version   Visualization version   Unicode version

Theorem ressnop0 6420
Description: If  A is not in  C, then the restriction of a singleton of  <. A ,  B >. to  C is null. (Contributed by Scott Fenton, 15-Apr-2011.)
Assertion
Ref Expression
ressnop0  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )

Proof of Theorem ressnop0
StepHypRef Expression
1 opelxp1 5150 . . 3  |-  ( <. A ,  B >.  e.  ( C  X.  _V )  ->  A  e.  C
)
21con3i 150 . 2  |-  ( -.  A  e.  C  ->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
3 df-res 5126 . . . 4  |-  ( {
<. A ,  B >. }  |`  C )  =  ( { <. A ,  B >. }  i^i  ( C  X.  _V ) )
4 incom 3805 . . . 4  |-  ( {
<. A ,  B >. }  i^i  ( C  X.  _V ) )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
53, 4eqtri 2644 . . 3  |-  ( {
<. A ,  B >. }  |`  C )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
6 disjsn 4246 . . . 4  |-  ( ( ( C  X.  _V )  i^i  { <. A ,  B >. } )  =  (/) 
<->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
76biimpri 218 . . 3  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( ( C  X.  _V )  i^i 
{ <. A ,  B >. } )  =  (/) )
85, 7syl5eq 2668 . 2  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( { <. A ,  B >. }  |`  C )  =  (/) )
92, 8syl 17 1  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   (/)c0 3915   {csn 4177   <.cop 4183    X. cxp 5112    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-res 5126
This theorem is referenced by:  fvunsn  6445  fsnunres  6454  wfrlem14  7428  ex-res  27298
  Copyright terms: Public domain W3C validator