| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvunsn | Structured version Visualization version Unicode version | ||
| Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| fvunsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundir 5411 |
. . . 4
| |
| 2 | nelsn 4212 |
. . . . . . 7
| |
| 3 | ressnop0 6420 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 17 |
. . . . . 6
|
| 5 | 4 | uneq2d 3767 |
. . . . 5
|
| 6 | un0 3967 |
. . . . 5
| |
| 7 | 5, 6 | syl6eq 2672 |
. . . 4
|
| 8 | 1, 7 | syl5eq 2668 |
. . 3
|
| 9 | 8 | fveq1d 6193 |
. 2
|
| 10 | fvressn 6429 |
. . 3
| |
| 11 | fvprc 6185 |
. . . 4
| |
| 12 | fvprc 6185 |
. . . 4
| |
| 13 | 11, 12 | eqtr4d 2659 |
. . 3
|
| 14 | 10, 13 | pm2.61i 176 |
. 2
|
| 15 | fvressn 6429 |
. . 3
| |
| 16 | fvprc 6185 |
. . . 4
| |
| 17 | fvprc 6185 |
. . . 4
| |
| 18 | 16, 17 | eqtr4d 2659 |
. . 3
|
| 19 | 15, 18 | pm2.61i 176 |
. 2
|
| 20 | 9, 14, 19 | 3eqtr3g 2679 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-res 5126 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: fvpr1 6456 fvpr1g 6458 fvpr2g 6459 fvtp1 6460 fvtp1g 6463 ac6sfi 8204 cats1un 13475 ruclem6 14964 ruclem7 14965 wlkp1lem5 26574 wlkp1lem6 26575 fnchoice 39188 nnsum4primeseven 41688 nnsum4primesevenALTV 41689 |
| Copyright terms: Public domain | W3C validator |