Proof of Theorem wfrlem14
Step | Hyp | Ref
| Expression |
1 | | wfrlem13.1 |
. . 3
 |
2 | | wfrlem13.2 |
. . 3
Se  |
3 | | wfrlem13.3 |
. . 3
wrecs     |
4 | | wfrlem13.4 |
. . 3
                   |
5 | 1, 2, 3, 4 | wfrlem13 7427 |
. 2
         |
6 | | elun 3753 |
. . . 4
           |
7 | | velsn 4193 |
. . . . 5
     |
8 | 7 | orbi2i 541 |
. . . 4
 
  
    |
9 | 6, 8 | bitri 264 |
. . 3
         |
10 | 1, 2, 3 | wfrlem12 7426 |
. . . . . . 7
                  |
11 | | fnfun 5988 |
. . . . . . . 8
    
  |
12 | | ssun1 3776 |
. . . . . . . . . 10

      
  
        |
13 | 12, 4 | sseqtr4i 3638 |
. . . . . . . . 9
 |
14 | | funssfv 6209 |
. . . . . . . . . 10
             |
15 | 3 | wfrdmcl 7423 |
. . . . . . . . . . . 12
        |
16 | | fun2ssres 5931 |
. . . . . . . . . . . 12
    
  
    
      
    |
17 | 15, 16 | syl3an3 1361 |
. . . . . . . . . . 11
      
      
     |
18 | 17 | fveq2d 6195 |
. . . . . . . . . 10
          
          
     |
19 | 14, 18 | eqeq12d 2637 |
. . . . . . . . 9
               
  
           
      |
20 | 13, 19 | mp3an2 1412 |
. . . . . . . 8
               
  
           
      |
21 | 11, 20 | sylan 488 |
. . . . . . 7
                   
  
           
      |
22 | 10, 21 | syl5ibr 236 |
. . . . . 6
                   
      |
23 | 22 | ex 450 |
. . . . 5
     
                    |
24 | 23 | pm2.43d 53 |
. . . 4
     
           
      |
25 | | vsnid 4209 |
. . . . . . 7
   |
26 | | elun2 3781 |
. . . . . . 7
         |
27 | 25, 26 | ax-mp 5 |
. . . . . 6
     |
28 | 4 | reseq1i 5392 |
. . . . . . . . . . . . 13
    
          
  
         
    |
29 | | resundir 5411 |
. . . . . . . . . . . . 13
        
  
         
                  
  
     
        |
30 | | wefr 5104 |
. . . . . . . . . . . . . . . . 17
   |
31 | 1, 30 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
 |
32 | | predfrirr 5709 |
. . . . . . . . . . . . . . . 16

       |
33 | | ressnop0 6420 |
. . . . . . . . . . . . . . . 16
   
             
       
     |
34 | 31, 32, 33 | mp2b 10 |
. . . . . . . . . . . . . . 15
                   
    |
35 | 34 | uneq2i 3764 |
. . . . . . . . . . . . . 14
 
                 
       
         
    |
36 | | un0 3967 |
. . . . . . . . . . . . . 14
 
          
    |
37 | 35, 36 | eqtri 2644 |
. . . . . . . . . . . . 13
 
                 
       
            |
38 | 28, 29, 37 | 3eqtri 2648 |
. . . . . . . . . . . 12
    
      
   |
39 | 38 | fveq2i 6194 |
. . . . . . . . . . 11
                       |
40 | 39 | opeq2i 4406 |
. . . . . . . . . 10
     
  
    
         
     |
41 | | opex 4932 |
. . . . . . . . . . 11
     
  
      |
42 | 41 | elsn 4192 |
. . . . . . . . . 10
              
      
  
               
         
  
       |
43 | 40, 42 | mpbir 221 |
. . . . . . . . 9
     
  
           
  
       |
44 | | elun2 3781 |
. . . . . . . . 9
              
      
  
     
         
           
  
         |
45 | 43, 44 | ax-mp 5 |
. . . . . . . 8
     
  
                        |
46 | 45, 4 | eleqtrri 2700 |
. . . . . . 7
     
  
      |
47 | | fnopfvb 6237 |
. . . . . . 7
                       
  
         
       |
48 | 46, 47 | mpbiri 248 |
. . . . . 6
                      
     |
49 | 27, 48 | mpan2 707 |
. . . . 5
                
     |
50 | | fveq2 6191 |
. . . . . 6
           |
51 | | predeq3 5684 |
. . . . . . . 8
   
         |
52 | 51 | reseq2d 5396 |
. . . . . . 7
     
      
    |
53 | 52 | fveq2d 6195 |
. . . . . 6
        
          
     |
54 | 50, 53 | eqeq12d 2637 |
. . . . 5
                            
      |
55 | 49, 54 | syl5ibrcom 237 |
. . . 4
     
           
      |
56 | 24, 55 | jaod 395 |
. . 3
      
                   |
57 | 9, 56 | syl5bi 232 |
. 2
                            |
58 | 5, 57 | syl 17 |
1
               
  
       |