MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval Structured version   Visualization version   Unicode version

Theorem ressval 15927
Description: Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressval  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  R  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )

Proof of Theorem ressval
Dummy variables  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2  |-  R  =  ( Ws  A )
2 elex 3212 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
3 elex 3212 . . 3  |-  ( A  e.  Y  ->  A  e.  _V )
4 simpl 473 . . . . 5  |-  ( ( W  e.  _V  /\  A  e.  _V )  ->  W  e.  _V )
5 ovex 6678 . . . . 5  |-  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )  e.  _V
6 ifcl 4130 . . . . 5  |-  ( ( W  e.  _V  /\  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. )  e.  _V )  ->  if ( B 
C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )
74, 5, 6sylancl 694 . . . 4  |-  ( ( W  e.  _V  /\  A  e.  _V )  ->  if ( B  C_  A ,  W , 
( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )  e.  _V )
8 simpl 473 . . . . . . . . 9  |-  ( ( w  =  W  /\  a  =  A )  ->  w  =  W )
98fveq2d 6195 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  ( Base `  W ) )
10 ressbas.b . . . . . . . 8  |-  B  =  ( Base `  W
)
119, 10syl6eqr 2674 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  B )
12 simpr 477 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  a  =  A )
1311, 12sseq12d 3634 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( ( Base `  w
)  C_  a  <->  B  C_  A
) )
1412, 11ineq12d 3815 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( a  i^i  ( Base `  w ) )  =  ( A  i^i  B ) )
1514opeq2d 4409 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  -> 
<. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. )
168, 15oveq12d 6668 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
1713, 8, 16ifbieq12d 4113 . . . . 5  |-  ( ( w  =  W  /\  a  =  A )  ->  if ( ( Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >. )
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
18 df-ress 15865 . . . . 5  |-s  =  ( w  e.  _V ,  a  e. 
_V  |->  if ( (
Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. ) ) )
1917, 18ovmpt2ga 6790 . . . 4  |-  ( ( W  e.  _V  /\  A  e.  _V  /\  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
207, 19mpd3an3 1425 . . 3  |-  ( ( W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
212, 3, 20syl2an 494 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
221, 21syl5eq 2668 1  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  R  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   <.cop 4183   ` cfv 5888  (class class class)co 6650   ndxcnx 15854   sSet csts 15855   Basecbs 15857   ↾s cress 15858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ress 15865
This theorem is referenced by:  ressid2  15928  ressval2  15929  wunress  15940
  Copyright terms: Public domain W3C validator