![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mpd3an3.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpd3an3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mpd3an3.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | 3expa 1265 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpdan 702 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: stoic2b 1700 elovmpt2 6879 f1oeng 7974 wdomimag 8492 cdaval 8992 gruuni 9622 genpv 9821 infssuzle 11771 fzrevral3 12427 flflp1 12608 subsq2 12973 brfi1ind 13281 opfi1ind 13284 brfi1indOLD 13287 opfi1indOLD 13290 ccatws1ls 13410 swrdrlen 13435 swrd0swrdid 13464 2cshwid 13560 caubnd 14098 dvdsmul1 15003 dvdsmul2 15004 hashbcval 15706 setsvalg 15887 ressval 15927 restval 16087 mrelatglb0 17185 imasmnd2 17327 qusinv 17653 ghminv 17667 symgov 17810 gexod 18001 lsmvalx 18054 ringrz 18588 imasring 18619 irredneg 18710 evlrhm 19525 gsumsmonply1 19673 ocvin 20018 frlmiscvec 20188 mat1mhm 20290 marrepfval 20366 marrepval0 20367 marepvfval 20371 marepvval0 20372 1elcpmat 20520 m2cpminv0 20566 idpm2idmp 20606 chfacfscmulgsum 20665 chfacfpmmulgsum 20669 restin 20970 qtopval 21498 elqtop3 21506 elfm3 21754 flimval 21767 nmge0 22421 nmeq0 22422 nminv 22425 nmo0 22539 0nghm 22545 coemulhi 24010 isosctrlem2 24549 divsqrtsumlem 24706 2lgsoddprmlem4 25140 0uhgrrusgr 26474 frgruhgr0v 27127 nvge0 27528 nvnd 27543 dip0r 27572 dip0l 27573 nmoo0 27646 hi2eq 27962 resvval 29827 unitdivcld 29947 signspval 30629 ltflcei 33397 elghomlem1OLD 33684 rngorz 33722 rngonegmn1l 33740 rngonegmn1r 33741 igenval 33860 lfl0 34352 olj01 34512 olm11 34514 hl2at 34691 pmapeq0 35052 trlcl 35451 trlle 35471 tendoid 36061 tendo0plr 36080 tendoipl2 36086 erngmul 36094 erngmul-rN 36102 dvamulr 36300 dvavadd 36303 dvhmulr 36375 cdlemm10N 36407 pellfund14 37462 mendmulr 37758 fmuldfeq 39815 stoweidlem19 40236 stoweidlem26 40243 pfxpfxid 41416 pfxcctswrd 41417 prelspr 41736 lincval1 42208 |
Copyright terms: Public domain | W3C validator |