| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reupick2 | Structured version Visualization version Unicode version | ||
| Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| Ref | Expression |
|---|---|
| reupick2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancr 572 |
. . . . . 6
| |
| 2 | 1 | ralimi 2952 |
. . . . 5
|
| 3 | rexim 3008 |
. . . . 5
| |
| 4 | 2, 3 | syl 17 |
. . . 4
|
| 5 | reupick3 3912 |
. . . . . 6
| |
| 6 | 5 | 3exp 1264 |
. . . . 5
|
| 7 | 6 | com12 32 |
. . . 4
|
| 8 | 4, 7 | syl6 35 |
. . 3
|
| 9 | 8 | 3imp1 1280 |
. 2
|
| 10 | rsp 2929 |
. . . 4
| |
| 11 | 10 | 3ad2ant1 1082 |
. . 3
|
| 12 | 11 | imp 445 |
. 2
|
| 13 | 9, 12 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 df-ral 2917 df-rex 2918 df-reu 2919 |
| This theorem is referenced by: grpoidval 27367 grpoidinv2 27369 grpoinv 27379 |
| Copyright terms: Public domain | W3C validator |