MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinv2 Structured version   Visualization version   Unicode version

Theorem grpoidinv2 27369
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1  |-  X  =  ran  G
grpoidval.2  |-  U  =  (GId `  G )
Assertion
Ref Expression
grpoidinv2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
Distinct variable groups:    y, A    y, G    y, U    y, X

Proof of Theorem grpoidinv2
Dummy variables  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . . . . . 7  |-  X  =  ran  G
2 grpoidval.2 . . . . . . 7  |-  U  =  (GId `  G )
31, 2grpoidval 27367 . . . . . 6  |-  ( G  e.  GrpOp  ->  U  =  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
41grpoideu 27363 . . . . . . 7  |-  ( G  e.  GrpOp  ->  E! u  e.  X  A. x  e.  X  ( u G x )  =  x )
5 riotacl2 6624 . . . . . . 7  |-  ( E! u  e.  X  A. x  e.  X  (
u G x )  =  x  ->  ( iota_ u  e.  X  A. x  e.  X  (
u G x )  =  x )  e. 
{ u  e.  X  |  A. x  e.  X  ( u G x )  =  x }
)
64, 5syl 17 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x )  e.  {
u  e.  X  |  A. x  e.  X  ( u G x )  =  x }
)
73, 6eqeltrd 2701 . . . . 5  |-  ( G  e.  GrpOp  ->  U  e.  { u  e.  X  |  A. x  e.  X  ( u G x )  =  x }
)
8 simpll 790 . . . . . . . . . . 11  |-  ( ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  ( u G x )  =  x )
98ralimi 2952 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )
109rgenw 2924 . . . . . . . . 9  |-  A. u  e.  X  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )
1110a1i 11 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  A. u  e.  X  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x ) )
121grpoidinv 27362 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  E. u  e.  X  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) )
1311, 12, 43jca 1242 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( A. u  e.  X  ( A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )  /\  E. u  e.  X  A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  /\  E! u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
14 reupick2 3913 . . . . . . 7  |-  ( ( ( A. u  e.  X  ( A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )  /\  E. u  e.  X  A. x  e.  X  ( ( ( u G x )  =  x  /\  (
x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) )  /\  E! u  e.  X  A. x  e.  X  ( u G x )  =  x )  /\  u  e.  X )  ->  ( A. x  e.  X  ( u G x )  =  x  <->  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) ) )
1513, 14sylan 488 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  u  e.  X )  ->  ( A. x  e.  X  ( u G x )  =  x  <->  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) ) )
1615rabbidva 3188 . . . . 5  |-  ( G  e.  GrpOp  ->  { u  e.  X  |  A. x  e.  X  (
u G x )  =  x }  =  { u  e.  X  |  A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) ) } )
177, 16eleqtrd 2703 . . . 4  |-  ( G  e.  GrpOp  ->  U  e.  { u  e.  X  |  A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) ) } )
18 oveq1 6657 . . . . . . . . 9  |-  ( u  =  U  ->  (
u G x )  =  ( U G x ) )
1918eqeq1d 2624 . . . . . . . 8  |-  ( u  =  U  ->  (
( u G x )  =  x  <->  ( U G x )  =  x ) )
20 oveq2 6658 . . . . . . . . 9  |-  ( u  =  U  ->  (
x G u )  =  ( x G U ) )
2120eqeq1d 2624 . . . . . . . 8  |-  ( u  =  U  ->  (
( x G u )  =  x  <->  ( x G U )  =  x ) )
2219, 21anbi12d 747 . . . . . . 7  |-  ( u  =  U  ->  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  <->  ( ( U G x )  =  x  /\  ( x G U )  =  x ) ) )
23 eqeq2 2633 . . . . . . . . 9  |-  ( u  =  U  ->  (
( y G x )  =  u  <->  ( y G x )  =  U ) )
24 eqeq2 2633 . . . . . . . . 9  |-  ( u  =  U  ->  (
( x G y )  =  u  <->  ( x G y )  =  U ) )
2523, 24anbi12d 747 . . . . . . . 8  |-  ( u  =  U  ->  (
( ( y G x )  =  u  /\  ( x G y )  =  u )  <->  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) )
2625rexbidv 3052 . . . . . . 7  |-  ( u  =  U  ->  ( E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u )  <->  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) )
2722, 26anbi12d 747 . . . . . 6  |-  ( u  =  U  ->  (
( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) )  <->  ( ( ( U G x )  =  x  /\  (
x G U )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
2827ralbidv 2986 . . . . 5  |-  ( u  =  U  ->  ( A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) )  <->  A. x  e.  X  ( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
2928elrab 3363 . . . 4  |-  ( U  e.  { u  e.  X  |  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) }  <-> 
( U  e.  X  /\  A. x  e.  X  ( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
3017, 29sylib 208 . . 3  |-  ( G  e.  GrpOp  ->  ( U  e.  X  /\  A. x  e.  X  ( (
( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
3130simprd 479 . 2  |-  ( G  e.  GrpOp  ->  A. x  e.  X  ( (
( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) )
32 oveq2 6658 . . . . . 6  |-  ( x  =  A  ->  ( U G x )  =  ( U G A ) )
33 id 22 . . . . . 6  |-  ( x  =  A  ->  x  =  A )
3432, 33eqeq12d 2637 . . . . 5  |-  ( x  =  A  ->  (
( U G x )  =  x  <->  ( U G A )  =  A ) )
35 oveq1 6657 . . . . . 6  |-  ( x  =  A  ->  (
x G U )  =  ( A G U ) )
3635, 33eqeq12d 2637 . . . . 5  |-  ( x  =  A  ->  (
( x G U )  =  x  <->  ( A G U )  =  A ) )
3734, 36anbi12d 747 . . . 4  |-  ( x  =  A  ->  (
( ( U G x )  =  x  /\  ( x G U )  =  x )  <->  ( ( U G A )  =  A  /\  ( A G U )  =  A ) ) )
38 oveq2 6658 . . . . . . 7  |-  ( x  =  A  ->  (
y G x )  =  ( y G A ) )
3938eqeq1d 2624 . . . . . 6  |-  ( x  =  A  ->  (
( y G x )  =  U  <->  ( y G A )  =  U ) )
40 oveq1 6657 . . . . . . 7  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
4140eqeq1d 2624 . . . . . 6  |-  ( x  =  A  ->  (
( x G y )  =  U  <->  ( A G y )  =  U ) )
4239, 41anbi12d 747 . . . . 5  |-  ( x  =  A  ->  (
( ( y G x )  =  U  /\  ( x G y )  =  U )  <->  ( ( y G A )  =  U  /\  ( A G y )  =  U ) ) )
4342rexbidv 3052 . . . 4  |-  ( x  =  A  ->  ( E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U )  <->  E. y  e.  X  ( ( y G A )  =  U  /\  ( A G y )  =  U ) ) )
4437, 43anbi12d 747 . . 3  |-  ( x  =  A  ->  (
( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) )  <->  ( ( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  (
( y G A )  =  U  /\  ( A G y )  =  U ) ) ) )
4544rspccva 3308 . 2  |-  ( ( A. x  e.  X  ( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) )  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
4631, 45sylan 488 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   ran crn 5115   ` cfv 5888   iota_crio 6610  (class class class)co 6650   GrpOpcgr 27343  GIdcgi 27344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-grpo 27347  df-gid 27348
This theorem is referenced by:  grpolid  27370  grporid  27371  grporcan  27372  grpoinveu  27373  grpoinv  27379
  Copyright terms: Public domain W3C validator