| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoidinv2 | Structured version Visualization version Unicode version | ||
| Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpoidval.1 |
|
| grpoidval.2 |
|
| Ref | Expression |
|---|---|
| grpoidinv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoidval.1 |
. . . . . . 7
| |
| 2 | grpoidval.2 |
. . . . . . 7
| |
| 3 | 1, 2 | grpoidval 27367 |
. . . . . 6
|
| 4 | 1 | grpoideu 27363 |
. . . . . . 7
|
| 5 | riotacl2 6624 |
. . . . . . 7
| |
| 6 | 4, 5 | syl 17 |
. . . . . 6
|
| 7 | 3, 6 | eqeltrd 2701 |
. . . . 5
|
| 8 | simpll 790 |
. . . . . . . . . . 11
| |
| 9 | 8 | ralimi 2952 |
. . . . . . . . . 10
|
| 10 | 9 | rgenw 2924 |
. . . . . . . . 9
|
| 11 | 10 | a1i 11 |
. . . . . . . 8
|
| 12 | 1 | grpoidinv 27362 |
. . . . . . . 8
|
| 13 | 11, 12, 4 | 3jca 1242 |
. . . . . . 7
|
| 14 | reupick2 3913 |
. . . . . . 7
| |
| 15 | 13, 14 | sylan 488 |
. . . . . 6
|
| 16 | 15 | rabbidva 3188 |
. . . . 5
|
| 17 | 7, 16 | eleqtrd 2703 |
. . . 4
|
| 18 | oveq1 6657 |
. . . . . . . . 9
| |
| 19 | 18 | eqeq1d 2624 |
. . . . . . . 8
|
| 20 | oveq2 6658 |
. . . . . . . . 9
| |
| 21 | 20 | eqeq1d 2624 |
. . . . . . . 8
|
| 22 | 19, 21 | anbi12d 747 |
. . . . . . 7
|
| 23 | eqeq2 2633 |
. . . . . . . . 9
| |
| 24 | eqeq2 2633 |
. . . . . . . . 9
| |
| 25 | 23, 24 | anbi12d 747 |
. . . . . . . 8
|
| 26 | 25 | rexbidv 3052 |
. . . . . . 7
|
| 27 | 22, 26 | anbi12d 747 |
. . . . . 6
|
| 28 | 27 | ralbidv 2986 |
. . . . 5
|
| 29 | 28 | elrab 3363 |
. . . 4
|
| 30 | 17, 29 | sylib 208 |
. . 3
|
| 31 | 30 | simprd 479 |
. 2
|
| 32 | oveq2 6658 |
. . . . . 6
| |
| 33 | id 22 |
. . . . . 6
| |
| 34 | 32, 33 | eqeq12d 2637 |
. . . . 5
|
| 35 | oveq1 6657 |
. . . . . 6
| |
| 36 | 35, 33 | eqeq12d 2637 |
. . . . 5
|
| 37 | 34, 36 | anbi12d 747 |
. . . 4
|
| 38 | oveq2 6658 |
. . . . . . 7
| |
| 39 | 38 | eqeq1d 2624 |
. . . . . 6
|
| 40 | oveq1 6657 |
. . . . . . 7
| |
| 41 | 40 | eqeq1d 2624 |
. . . . . 6
|
| 42 | 39, 41 | anbi12d 747 |
. . . . 5
|
| 43 | 42 | rexbidv 3052 |
. . . 4
|
| 44 | 37, 43 | anbi12d 747 |
. . 3
|
| 45 | 44 | rspccva 3308 |
. 2
|
| 46 | 31, 45 | sylan 488 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-riota 6611 df-ov 6653 df-grpo 27347 df-gid 27348 |
| This theorem is referenced by: grpolid 27370 grporid 27371 grporcan 27372 grpoinveu 27373 grpoinv 27379 |
| Copyright terms: Public domain | W3C validator |