MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinv Structured version   Visualization version   Unicode version

Theorem grpoinv 27379
Description: The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1  |-  X  =  ran  G
grpinv.2  |-  U  =  (GId `  G )
grpinv.3  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
grpoinv  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( N `  A ) G A )  =  U  /\  ( A G ( N `
 A ) )  =  U ) )

Proof of Theorem grpoinv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grpinv.1 . . . . . 6  |-  X  =  ran  G
2 grpinv.2 . . . . . 6  |-  U  =  (GId `  G )
3 grpinv.3 . . . . . 6  |-  N  =  ( inv `  G
)
41, 2, 3grpoinvval 27377 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  =  ( iota_ y  e.  X  ( y G A )  =  U ) )
51, 2grpoinveu 27373 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E! y  e.  X  (
y G A )  =  U )
6 riotacl2 6624 . . . . . 6  |-  ( E! y  e.  X  ( y G A )  =  U  ->  ( iota_ y  e.  X  ( y G A )  =  U )  e. 
{ y  e.  X  |  ( y G A )  =  U } )
75, 6syl 17 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( iota_ y  e.  X  ( y G A )  =  U )  e. 
{ y  e.  X  |  ( y G A )  =  U } )
84, 7eqeltrd 2701 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  { y  e.  X  |  ( y G A )  =  U } )
9 simpl 473 . . . . . . . . 9  |-  ( ( ( y G A )  =  U  /\  ( A G y )  =  U )  -> 
( y G A )  =  U )
109rgenw 2924 . . . . . . . 8  |-  A. y  e.  X  ( (
( y G A )  =  U  /\  ( A G y )  =  U )  -> 
( y G A )  =  U )
1110a1i 11 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  A. y  e.  X  ( (
( y G A )  =  U  /\  ( A G y )  =  U )  -> 
( y G A )  =  U ) )
121, 2grpoidinv2 27369 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
1312simprd 479 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) )
1411, 13, 53jca 1242 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A. y  e.  X  ( ( ( y G A )  =  U  /\  ( A G y )  =  U )  ->  (
y G A )  =  U )  /\  E. y  e.  X  ( ( y G A )  =  U  /\  ( A G y )  =  U )  /\  E! y  e.  X  ( y G A )  =  U ) )
15 reupick2 3913 . . . . . 6  |-  ( ( ( A. y  e.  X  ( ( ( y G A )  =  U  /\  ( A G y )  =  U )  ->  (
y G A )  =  U )  /\  E. y  e.  X  ( ( y G A )  =  U  /\  ( A G y )  =  U )  /\  E! y  e.  X  ( y G A )  =  U )  /\  y  e.  X
)  ->  ( (
y G A )  =  U  <->  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
1614, 15sylan 488 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( (
y G A )  =  U  <->  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
1716rabbidva 3188 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  { y  e.  X  |  ( y G A )  =  U }  =  { y  e.  X  |  ( ( y G A )  =  U  /\  ( A G y )  =  U ) } )
188, 17eleqtrd 2703 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  { y  e.  X  |  ( ( y G A )  =  U  /\  ( A G y )  =  U ) } )
19 oveq1 6657 . . . . . 6  |-  ( y  =  ( N `  A )  ->  (
y G A )  =  ( ( N `
 A ) G A ) )
2019eqeq1d 2624 . . . . 5  |-  ( y  =  ( N `  A )  ->  (
( y G A )  =  U  <->  ( ( N `  A ) G A )  =  U ) )
21 oveq2 6658 . . . . . 6  |-  ( y  =  ( N `  A )  ->  ( A G y )  =  ( A G ( N `  A ) ) )
2221eqeq1d 2624 . . . . 5  |-  ( y  =  ( N `  A )  ->  (
( A G y )  =  U  <->  ( A G ( N `  A ) )  =  U ) )
2320, 22anbi12d 747 . . . 4  |-  ( y  =  ( N `  A )  ->  (
( ( y G A )  =  U  /\  ( A G y )  =  U )  <->  ( ( ( N `  A ) G A )  =  U  /\  ( A G ( N `  A ) )  =  U ) ) )
2423elrab 3363 . . 3  |-  ( ( N `  A )  e.  { y  e.  X  |  ( ( y G A )  =  U  /\  ( A G y )  =  U ) }  <->  ( ( N `  A )  e.  X  /\  (
( ( N `  A ) G A )  =  U  /\  ( A G ( N `
 A ) )  =  U ) ) )
2518, 24sylib 208 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
)  e.  X  /\  ( ( ( N `
 A ) G A )  =  U  /\  ( A G ( N `  A
) )  =  U ) ) )
2625simprd 479 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( N `  A ) G A )  =  U  /\  ( A G ( N `
 A ) )  =  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   ran crn 5115   ` cfv 5888   iota_crio 6610  (class class class)co 6650   GrpOpcgr 27343  GIdcgi 27344   invcgn 27345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-grpo 27347  df-gid 27348  df-ginv 27349
This theorem is referenced by:  grpolinv  27380  grporinv  27381
  Copyright terms: Public domain W3C validator