| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoidval | Structured version Visualization version Unicode version | ||
| Description: Lemma for grpoidcl 27368 and others. (Contributed by NM, 5-Feb-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpoidval.1 |
|
| grpoidval.2 |
|
| Ref | Expression |
|---|---|
| grpoidval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoidval.2 |
. 2
| |
| 2 | grpoidval.1 |
. . . 4
| |
| 3 | 2 | gidval 27366 |
. . 3
|
| 4 | simpl 473 |
. . . . . . . . 9
| |
| 5 | 4 | ralimi 2952 |
. . . . . . . 8
|
| 6 | 5 | rgenw 2924 |
. . . . . . 7
|
| 7 | 6 | a1i 11 |
. . . . . 6
|
| 8 | 2 | grpoidinv 27362 |
. . . . . . 7
|
| 9 | simpl 473 |
. . . . . . . . 9
| |
| 10 | 9 | ralimi 2952 |
. . . . . . . 8
|
| 11 | 10 | reximi 3011 |
. . . . . . 7
|
| 12 | 8, 11 | syl 17 |
. . . . . 6
|
| 13 | 2 | grpoideu 27363 |
. . . . . 6
|
| 14 | 7, 12, 13 | 3jca 1242 |
. . . . 5
|
| 15 | reupick2 3913 |
. . . . 5
| |
| 16 | 14, 15 | sylan 488 |
. . . 4
|
| 17 | 16 | riotabidva 6627 |
. . 3
|
| 18 | 3, 17 | eqtr4d 2659 |
. 2
|
| 19 | 1, 18 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-riota 6611 df-ov 6653 df-grpo 27347 df-gid 27348 |
| This theorem is referenced by: grpoidcl 27368 grpoidinv2 27369 cnidOLD 27437 hilid 28018 |
| Copyright terms: Public domain | W3C validator |