MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidval Structured version   Visualization version   Unicode version

Theorem grpoidval 27367
Description: Lemma for grpoidcl 27368 and others. (Contributed by NM, 5-Feb-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1  |-  X  =  ran  G
grpoidval.2  |-  U  =  (GId `  G )
Assertion
Ref Expression
grpoidval  |-  ( G  e.  GrpOp  ->  U  =  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
Distinct variable groups:    x, u, G    u, U, x    u, X, x

Proof of Theorem grpoidval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grpoidval.2 . 2  |-  U  =  (GId `  G )
2 grpoidval.1 . . . 4  |-  X  =  ran  G
32gidval 27366 . . 3  |-  ( G  e.  GrpOp  ->  (GId `  G
)  =  ( iota_ u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  (
x G u )  =  x ) ) )
4 simpl 473 . . . . . . . . 9  |-  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  ->  ( u G x )  =  x )
54ralimi 2952 . . . . . . . 8  |-  ( A. x  e.  X  (
( u G x )  =  x  /\  ( x G u )  =  x )  ->  A. x  e.  X  ( u G x )  =  x )
65rgenw 2924 . . . . . . 7  |-  A. u  e.  X  ( A. x  e.  X  (
( u G x )  =  x  /\  ( x G u )  =  x )  ->  A. x  e.  X  ( u G x )  =  x )
76a1i 11 . . . . . 6  |-  ( G  e.  GrpOp  ->  A. u  e.  X  ( A. x  e.  X  (
( u G x )  =  x  /\  ( x G u )  =  x )  ->  A. x  e.  X  ( u G x )  =  x ) )
82grpoidinv 27362 . . . . . . 7  |-  ( G  e.  GrpOp  ->  E. u  e.  X  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) )
9 simpl 473 . . . . . . . . 9  |-  ( ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  ( ( u G x )  =  x  /\  ( x G u )  =  x ) )
109ralimi 2952 . . . . . . . 8  |-  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) )
1110reximi 3011 . . . . . . 7  |-  ( E. u  e.  X  A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) )
128, 11syl 17 . . . . . 6  |-  ( G  e.  GrpOp  ->  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  (
x G u )  =  x ) )
132grpoideu 27363 . . . . . 6  |-  ( G  e.  GrpOp  ->  E! u  e.  X  A. x  e.  X  ( u G x )  =  x )
147, 12, 133jca 1242 . . . . 5  |-  ( G  e.  GrpOp  ->  ( A. u  e.  X  ( A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x )  ->  A. x  e.  X  ( u G x )  =  x )  /\  E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E! u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
15 reupick2 3913 . . . . 5  |-  ( ( ( A. u  e.  X  ( A. x  e.  X  ( (
u G x )  =  x  /\  (
x G u )  =  x )  ->  A. x  e.  X  ( u G x )  =  x )  /\  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E! u  e.  X  A. x  e.  X  (
u G x )  =  x )  /\  u  e.  X )  ->  ( A. x  e.  X  ( u G x )  =  x  <->  A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
1614, 15sylan 488 . . . 4  |-  ( ( G  e.  GrpOp  /\  u  e.  X )  ->  ( A. x  e.  X  ( u G x )  =  x  <->  A. x  e.  X  ( (
u G x )  =  x  /\  (
x G u )  =  x ) ) )
1716riotabidva 6627 . . 3  |-  ( G  e.  GrpOp  ->  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x )  =  (
iota_ u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
183, 17eqtr4d 2659 . 2  |-  ( G  e.  GrpOp  ->  (GId `  G
)  =  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
191, 18syl5eq 2668 1  |-  ( G  e.  GrpOp  ->  U  =  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   ran crn 5115   ` cfv 5888   iota_crio 6610  (class class class)co 6650   GrpOpcgr 27343  GIdcgi 27344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-grpo 27347  df-gid 27348
This theorem is referenced by:  grpoidcl  27368  grpoidinv2  27369  cnidOLD  27437  hilid  28018
  Copyright terms: Public domain W3C validator