| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reusv2lem5 | Structured version Visualization version Unicode version | ||
| Description: Lemma for reusv2 4874. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| Ref | Expression |
|---|---|
| reusv2lem5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1487 |
. . . . . . . . 9
| |
| 2 | biimt 350 |
. . . . . . . . 9
| |
| 3 | 1, 2 | mpan2 707 |
. . . . . . . 8
|
| 4 | ibar 525 |
. . . . . . . 8
| |
| 5 | 3, 4 | bitr3d 270 |
. . . . . . 7
|
| 6 | eleq1 2689 |
. . . . . . . 8
| |
| 7 | 6 | pm5.32ri 670 |
. . . . . . 7
|
| 8 | 5, 7 | syl6bbr 278 |
. . . . . 6
|
| 9 | 8 | ralimi 2952 |
. . . . 5
|
| 10 | ralbi 3068 |
. . . . 5
| |
| 11 | 9, 10 | syl 17 |
. . . 4
|
| 12 | 11 | eubidv 2490 |
. . 3
|
| 13 | r19.28zv 4066 |
. . . 4
| |
| 14 | 13 | eubidv 2490 |
. . 3
|
| 15 | 12, 14 | sylan9bb 736 |
. 2
|
| 16 | 1 | biantrur 527 |
. . . . 5
|
| 17 | 16 | rexbii 3041 |
. . . 4
|
| 18 | 17 | reubii 3128 |
. . 3
|
| 19 | reusv2lem4 4872 |
. . 3
| |
| 20 | 18, 19 | bitri 264 |
. 2
|
| 21 | df-reu 2919 |
. 2
| |
| 22 | 15, 20, 21 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: reusv2 4874 |
| Copyright terms: Public domain | W3C validator |