| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reusv2lem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for reusv2 4874. (Contributed by NM, 13-Dec-2012.) |
| Ref | Expression |
|---|---|
| reusv2lem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2919 |
. 2
| |
| 2 | anass 681 |
. . . . . 6
| |
| 3 | rabid 3116 |
. . . . . . 7
| |
| 4 | 3 | anbi1i 731 |
. . . . . 6
|
| 5 | anass 681 |
. . . . . . . 8
| |
| 6 | eleq1 2689 |
. . . . . . . . . 10
| |
| 7 | 6 | anbi1d 741 |
. . . . . . . . 9
|
| 8 | 7 | pm5.32ri 670 |
. . . . . . . 8
|
| 9 | 5, 8 | bitr3i 266 |
. . . . . . 7
|
| 10 | 9 | anbi2i 730 |
. . . . . 6
|
| 11 | 2, 4, 10 | 3bitr4ri 293 |
. . . . 5
|
| 12 | 11 | rexbii2 3039 |
. . . 4
|
| 13 | r19.42v 3092 |
. . . 4
| |
| 14 | nfrab1 3122 |
. . . . 5
| |
| 15 | nfcv 2764 |
. . . . 5
| |
| 16 | nfv 1843 |
. . . . 5
| |
| 17 | nfcsb1v 3549 |
. . . . . 6
| |
| 18 | 17 | nfeq2 2780 |
. . . . 5
|
| 19 | csbeq1a 3542 |
. . . . . 6
| |
| 20 | 19 | eqeq2d 2632 |
. . . . 5
|
| 21 | 14, 15, 16, 18, 20 | cbvrexf 3166 |
. . . 4
|
| 22 | 12, 13, 21 | 3bitr3i 290 |
. . 3
|
| 23 | 22 | eubii 2492 |
. 2
|
| 24 | elex 3212 |
. . . . . . . 8
| |
| 25 | 24 | ad2antrl 764 |
. . . . . . 7
|
| 26 | 3, 25 | sylbi 207 |
. . . . . 6
|
| 27 | 26 | rgen 2922 |
. . . . 5
|
| 28 | nfv 1843 |
. . . . . 6
| |
| 29 | 17 | nfel1 2779 |
. . . . . 6
|
| 30 | 19 | eleq1d 2686 |
. . . . . 6
|
| 31 | 14, 15, 28, 29, 30 | cbvralf 3165 |
. . . . 5
|
| 32 | 27, 31 | mpbi 220 |
. . . 4
|
| 33 | reusv2lem3 4871 |
. . . 4
| |
| 34 | 32, 33 | ax-mp 5 |
. . 3
|
| 35 | df-ral 2917 |
. . . . 5
| |
| 36 | nfv 1843 |
. . . . . 6
| |
| 37 | 14 | nfcri 2758 |
. . . . . . 7
|
| 38 | 37, 18 | nfim 1825 |
. . . . . 6
|
| 39 | eleq1 2689 |
. . . . . . 7
| |
| 40 | 39, 20 | imbi12d 334 |
. . . . . 6
|
| 41 | 36, 38, 40 | cbval 2271 |
. . . . 5
|
| 42 | 3 | imbi1i 339 |
. . . . . . . 8
|
| 43 | impexp 462 |
. . . . . . . 8
| |
| 44 | 42, 43 | bitri 264 |
. . . . . . 7
|
| 45 | 44 | albii 1747 |
. . . . . 6
|
| 46 | df-ral 2917 |
. . . . . 6
| |
| 47 | 45, 46 | bitr4i 267 |
. . . . 5
|
| 48 | 35, 41, 47 | 3bitr2i 288 |
. . . 4
|
| 49 | 48 | eubii 2492 |
. . 3
|
| 50 | 34, 49 | bitri 264 |
. 2
|
| 51 | 1, 23, 50 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: reusv2lem5 4873 |
| Copyright terms: Public domain | W3C validator |