![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version Unicode version |
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
reubii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reubii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubii.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 11 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | reubiia 3127 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-reu 2919 |
This theorem is referenced by: 2reu5lem1 3413 reusv2lem5 4873 reusv2 4874 oaf1o 7643 aceq2 8942 lubfval 16978 lubeldm 16981 glbfval 16991 glbeldm 16994 oduglb 17139 odulub 17141 usgredg2vlem1 26117 usgredg2vlem2 26118 frcond1 27130 frcond2 27131 n4cyclfrgr 27155 cnlnadjlem3 28928 disjrdx 29404 lshpsmreu 34396 2reu7 41191 2reu8 41192 |
Copyright terms: Public domain | W3C validator |