| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexxpf | Structured version Visualization version Unicode version | ||
| Description: Version of rexxp 5264 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralxpf.1 |
|
| ralxpf.2 |
|
| ralxpf.3 |
|
| ralxpf.4 |
|
| Ref | Expression |
|---|---|
| rexxpf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxpf.1 |
. . . . . 6
| |
| 2 | 1 | nfn 1784 |
. . . . 5
|
| 3 | ralxpf.2 |
. . . . . 6
| |
| 4 | 3 | nfn 1784 |
. . . . 5
|
| 5 | ralxpf.3 |
. . . . . 6
| |
| 6 | 5 | nfn 1784 |
. . . . 5
|
| 7 | ralxpf.4 |
. . . . . 6
| |
| 8 | 7 | notbid 308 |
. . . . 5
|
| 9 | 2, 4, 6, 8 | ralxpf 5268 |
. . . 4
|
| 10 | ralnex 2992 |
. . . . 5
| |
| 11 | 10 | ralbii 2980 |
. . . 4
|
| 12 | 9, 11 | bitri 264 |
. . 3
|
| 13 | 12 | notbii 310 |
. 2
|
| 14 | dfrex2 2996 |
. 2
| |
| 15 | dfrex2 2996 |
. 2
| |
| 16 | 13, 14, 15 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-iun 4522 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: iunxpf 5270 wdom2d2 37602 |
| Copyright terms: Public domain | W3C validator |