Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wdom2d2 Structured version   Visualization version   Unicode version

Theorem wdom2d2 37602
Description: Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.)
Hypotheses
Ref Expression
wdom2d2.a  |-  ( ph  ->  A  e.  V )
wdom2d2.b  |-  ( ph  ->  B  e.  W )
wdom2d2.c  |-  ( ph  ->  C  e.  X )
wdom2d2.o  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  B  E. z  e.  C  x  =  X )
Assertion
Ref Expression
wdom2d2  |-  ( ph  ->  A  ~<_*  ( B  X.  C
) )
Distinct variable groups:    x, X    x, A    x, y, B   
x, z, C, y    ph, x
Allowed substitution hints:    ph( y, z)    A( y, z)    B( z)    V( x, y, z)    W( x, y, z)    X( y, z)

Proof of Theorem wdom2d2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 wdom2d2.a . 2  |-  ( ph  ->  A  e.  V )
2 wdom2d2.b . . 3  |-  ( ph  ->  B  e.  W )
3 wdom2d2.c . . 3  |-  ( ph  ->  C  e.  X )
4 xpexg 6960 . . 3  |-  ( ( B  e.  W  /\  C  e.  X )  ->  ( B  X.  C
)  e.  _V )
52, 3, 4syl2anc 693 . 2  |-  ( ph  ->  ( B  X.  C
)  e.  _V )
6 wdom2d2.o . . 3  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  B  E. z  e.  C  x  =  X )
7 nfcsb1v 3549 . . . . 5  |-  F/_ y [_ ( 1st `  w
)  /  y ]_ [_ ( 2nd `  w
)  /  z ]_ X
87nfeq2 2780 . . . 4  |-  F/ y  x  =  [_ ( 1st `  w )  / 
y ]_ [_ ( 2nd `  w )  /  z ]_ X
9 nfcv 2764 . . . . . 6  |-  F/_ z
( 1st `  w
)
10 nfcsb1v 3549 . . . . . 6  |-  F/_ z [_ ( 2nd `  w
)  /  z ]_ X
119, 10nfcsb 3551 . . . . 5  |-  F/_ z [_ ( 1st `  w
)  /  y ]_ [_ ( 2nd `  w
)  /  z ]_ X
1211nfeq2 2780 . . . 4  |-  F/ z  x  =  [_ ( 1st `  w )  / 
y ]_ [_ ( 2nd `  w )  /  z ]_ X
13 nfv 1843 . . . 4  |-  F/ w  x  =  X
14 csbopeq1a 7221 . . . . 5  |-  ( w  =  <. y ,  z
>.  ->  [_ ( 1st `  w
)  /  y ]_ [_ ( 2nd `  w
)  /  z ]_ X  =  X )
1514eqeq2d 2632 . . . 4  |-  ( w  =  <. y ,  z
>.  ->  ( x  = 
[_ ( 1st `  w
)  /  y ]_ [_ ( 2nd `  w
)  /  z ]_ X 
<->  x  =  X ) )
168, 12, 13, 15rexxpf 5269 . . 3  |-  ( E. w  e.  ( B  X.  C ) x  =  [_ ( 1st `  w )  /  y ]_ [_ ( 2nd `  w
)  /  z ]_ X 
<->  E. y  e.  B  E. z  e.  C  x  =  X )
176, 16sylibr 224 . 2  |-  ( (
ph  /\  x  e.  A )  ->  E. w  e.  ( B  X.  C
) x  =  [_ ( 1st `  w )  /  y ]_ [_ ( 2nd `  w )  / 
z ]_ X )
181, 5, 17wdom2d 8485 1  |-  ( ph  ->  A  ~<_*  ( B  X.  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   [_csb 3533   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888   1stc1st 7166   2ndc2nd 7167    ~<_* cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-wdom 8464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator