MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaeqimp Structured version   Visualization version   Unicode version

Theorem riotaeqimp 6634
Description: If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
riotaeqimp.i  |-  I  =  ( iota_ a  e.  V  X  =  A )
riotaeqimp.j  |-  J  =  ( iota_ a  e.  V  Y  =  A )
riotaeqimp.x  |-  ( ph  ->  E! a  e.  V  X  =  A )
riotaeqimp.y  |-  ( ph  ->  E! a  e.  V  Y  =  A )
Assertion
Ref Expression
riotaeqimp  |-  ( (
ph  /\  I  =  J )  ->  X  =  Y )
Distinct variable groups:    I, a    J, a    V, a    X, a    Y, a
Allowed substitution hints:    ph( a)    A( a)

Proof of Theorem riotaeqimp
StepHypRef Expression
1 riotaeqimp.j . . . . . . 7  |-  J  =  ( iota_ a  e.  V  Y  =  A )
21eqcomi 2631 . . . . . 6  |-  ( iota_ a  e.  V  Y  =  A )  =  J
32eqeq2i 2634 . . . . 5  |-  ( I  =  ( iota_ a  e.  V  Y  =  A )  <->  I  =  J
)
43a1i 11 . . . 4  |-  ( ph  ->  ( I  =  (
iota_ a  e.  V  Y  =  A )  <->  I  =  J ) )
54bicomd 213 . . 3  |-  ( ph  ->  ( I  =  J  <-> 
I  =  ( iota_ a  e.  V  Y  =  A ) ) )
65biimpa 501 . 2  |-  ( (
ph  /\  I  =  J )  ->  I  =  ( iota_ a  e.  V  Y  =  A ) )
7 riotaeqimp.i . . . . 5  |-  I  =  ( iota_ a  e.  V  X  =  A )
87eqeq1i 2627 . . . 4  |-  ( I  =  J  <->  ( iota_ a  e.  V  X  =  A )  =  J )
9 riotaeqimp.y . . . . . . 7  |-  ( ph  ->  E! a  e.  V  Y  =  A )
10 riotacl 6625 . . . . . . 7  |-  ( E! a  e.  V  Y  =  A  ->  ( iota_ a  e.  V  Y  =  A )  e.  V
)
119, 10syl 17 . . . . . 6  |-  ( ph  ->  ( iota_ a  e.  V  Y  =  A )  e.  V )
121, 11syl5eqel 2705 . . . . 5  |-  ( ph  ->  J  e.  V )
13 riotaeqimp.x . . . . 5  |-  ( ph  ->  E! a  e.  V  X  =  A )
14 nfv 1843 . . . . . . 7  |-  F/ a  J  e.  V
15 nfcvd 2765 . . . . . . 7  |-  ( J  e.  V  ->  F/_ a J )
16 nfcvd 2765 . . . . . . . 8  |-  ( J  e.  V  ->  F/_ a X )
1715nfcsb1d 3547 . . . . . . . 8  |-  ( J  e.  V  ->  F/_ a [_ J  /  a ]_ A )
1816, 17nfeqd 2772 . . . . . . 7  |-  ( J  e.  V  ->  F/ a  X  =  [_ J  /  a ]_ A
)
19 id 22 . . . . . . 7  |-  ( J  e.  V  ->  J  e.  V )
20 csbeq1a 3542 . . . . . . . . 9  |-  ( a  =  J  ->  A  =  [_ J  /  a ]_ A )
2120eqeq2d 2632 . . . . . . . 8  |-  ( a  =  J  ->  ( X  =  A  <->  X  =  [_ J  /  a ]_ A ) )
2221adantl 482 . . . . . . 7  |-  ( ( J  e.  V  /\  a  =  J )  ->  ( X  =  A  <-> 
X  =  [_ J  /  a ]_ A
) )
2314, 15, 18, 19, 22riota2df 6631 . . . . . 6  |-  ( ( J  e.  V  /\  E! a  e.  V  X  =  A )  ->  ( X  =  [_ J  /  a ]_ A  <->  (
iota_ a  e.  V  X  =  A )  =  J ) )
2423bicomd 213 . . . . 5  |-  ( ( J  e.  V  /\  E! a  e.  V  X  =  A )  ->  ( ( iota_ a  e.  V  X  =  A )  =  J  <->  X  =  [_ J  /  a ]_ A ) )
2512, 13, 24syl2anc 693 . . . 4  |-  ( ph  ->  ( ( iota_ a  e.  V  X  =  A )  =  J  <->  X  =  [_ J  /  a ]_ A ) )
268, 25syl5bb 272 . . 3  |-  ( ph  ->  ( I  =  J  <-> 
X  =  [_ J  /  a ]_ A
) )
2726biimpa 501 . 2  |-  ( (
ph  /\  I  =  J )  ->  X  =  [_ J  /  a ]_ A )
28 riotacl 6625 . . . . . . . 8  |-  ( E! a  e.  V  X  =  A  ->  ( iota_ a  e.  V  X  =  A )  e.  V
)
2913, 28syl 17 . . . . . . 7  |-  ( ph  ->  ( iota_ a  e.  V  X  =  A )  e.  V )
307, 29syl5eqel 2705 . . . . . 6  |-  ( ph  ->  I  e.  V )
31 nfv 1843 . . . . . . 7  |-  F/ a  I  e.  V
32 nfcvd 2765 . . . . . . 7  |-  ( I  e.  V  ->  F/_ a
I )
33 nfcvd 2765 . . . . . . . 8  |-  ( I  e.  V  ->  F/_ a Y )
3432nfcsb1d 3547 . . . . . . . 8  |-  ( I  e.  V  ->  F/_ a [_ I  /  a ]_ A )
3533, 34nfeqd 2772 . . . . . . 7  |-  ( I  e.  V  ->  F/ a  Y  =  [_ I  /  a ]_ A
)
36 id 22 . . . . . . 7  |-  ( I  e.  V  ->  I  e.  V )
37 csbeq1a 3542 . . . . . . . . 9  |-  ( a  =  I  ->  A  =  [_ I  /  a ]_ A )
3837eqeq2d 2632 . . . . . . . 8  |-  ( a  =  I  ->  ( Y  =  A  <->  Y  =  [_ I  /  a ]_ A ) )
3938adantl 482 . . . . . . 7  |-  ( ( I  e.  V  /\  a  =  I )  ->  ( Y  =  A  <-> 
Y  =  [_ I  /  a ]_ A
) )
4031, 32, 35, 36, 39riota2df 6631 . . . . . 6  |-  ( ( I  e.  V  /\  E! a  e.  V  Y  =  A )  ->  ( Y  =  [_ I  /  a ]_ A  <->  (
iota_ a  e.  V  Y  =  A )  =  I ) )
4130, 9, 40syl2anc 693 . . . . 5  |-  ( ph  ->  ( Y  =  [_ I  /  a ]_ A  <->  (
iota_ a  e.  V  Y  =  A )  =  I ) )
42 eqcom 2629 . . . . 5  |-  ( (
iota_ a  e.  V  Y  =  A )  =  I  <->  I  =  ( iota_ a  e.  V  Y  =  A ) )
4341, 42syl6bb 276 . . . 4  |-  ( ph  ->  ( Y  =  [_ I  /  a ]_ A  <->  I  =  ( iota_ a  e.  V  Y  =  A ) ) )
4443adantr 481 . . 3  |-  ( (
ph  /\  I  =  J )  ->  ( Y  =  [_ I  / 
a ]_ A  <->  I  =  ( iota_ a  e.  V  Y  =  A )
) )
45 csbeq1 3536 . . . . . . 7  |-  ( J  =  I  ->  [_ J  /  a ]_ A  =  [_ I  /  a ]_ A )
4645eqcoms 2630 . . . . . 6  |-  ( I  =  J  ->  [_ J  /  a ]_ A  =  [_ I  /  a ]_ A )
47 eqeq12 2635 . . . . . . 7  |-  ( ( X  =  [_ J  /  a ]_ A  /\  Y  =  [_ I  /  a ]_ A
)  ->  ( X  =  Y  <->  [_ J  /  a ]_ A  =  [_ I  /  a ]_ A
) )
4847ancoms 469 . . . . . 6  |-  ( ( Y  =  [_ I  /  a ]_ A  /\  X  =  [_ J  /  a ]_ A
)  ->  ( X  =  Y  <->  [_ J  /  a ]_ A  =  [_ I  /  a ]_ A
) )
4946, 48syl5ibrcom 237 . . . . 5  |-  ( I  =  J  ->  (
( Y  =  [_ I  /  a ]_ A  /\  X  =  [_ J  /  a ]_ A
)  ->  X  =  Y ) )
5049expd 452 . . . 4  |-  ( I  =  J  ->  ( Y  =  [_ I  / 
a ]_ A  ->  ( X  =  [_ J  / 
a ]_ A  ->  X  =  Y ) ) )
5150adantl 482 . . 3  |-  ( (
ph  /\  I  =  J )  ->  ( Y  =  [_ I  / 
a ]_ A  ->  ( X  =  [_ J  / 
a ]_ A  ->  X  =  Y ) ) )
5244, 51sylbird 250 . 2  |-  ( (
ph  /\  I  =  J )  ->  (
I  =  ( iota_ a  e.  V  Y  =  A )  ->  ( X  =  [_ J  / 
a ]_ A  ->  X  =  Y ) ) )
536, 27, 52mp2d 49 1  |-  ( (
ph  /\  I  =  J )  ->  X  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E!wreu 2914   [_csb 3533   iota_crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-riota 6611
This theorem is referenced by:  uspgredg2v  26116
  Copyright terms: Public domain W3C validator