MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredg2v Structured version   Visualization version   Unicode version

Theorem uspgredg2v 26116
Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
uspgredg2v.v  |-  V  =  (Vtx `  G )
uspgredg2v.e  |-  E  =  (Edg `  G )
uspgredg2v.a  |-  A  =  { e  e.  E  |  N  e.  e }
uspgredg2v.f  |-  F  =  ( y  e.  A  |->  ( iota_ z  e.  V  y  =  { N ,  z } ) )
Assertion
Ref Expression
uspgredg2v  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  F : A -1-1-> V )
Distinct variable groups:    e, E    z, G    e, N    z, N    z, V    y, A    y, G    y, N, z   
y, V    y, e
Allowed substitution hints:    A( z, e)    E( y, z)    F( y, z, e)    G( e)    V( e)

Proof of Theorem uspgredg2v
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgredg2v.v . . . . 5  |-  V  =  (Vtx `  G )
2 uspgredg2v.e . . . . 5  |-  E  =  (Edg `  G )
3 uspgredg2v.a . . . . 5  |-  A  =  { e  e.  E  |  N  e.  e }
41, 2, 3uspgredg2vlem 26115 . . . 4  |-  ( ( G  e. USPGraph  /\  y  e.  A )  ->  ( iota_ z  e.  V  y  =  { N , 
z } )  e.  V )
54ralrimiva 2966 . . 3  |-  ( G  e. USPGraph  ->  A. y  e.  A  ( iota_ z  e.  V  y  =  { N ,  z } )  e.  V )
65adantr 481 . 2  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  A. y  e.  A  ( iota_ z  e.  V  y  =  { N ,  z } )  e.  V
)
7 preq2 4269 . . . . . . 7  |-  ( z  =  n  ->  { N ,  z }  =  { N ,  n }
)
87eqeq2d 2632 . . . . . 6  |-  ( z  =  n  ->  (
y  =  { N ,  z }  <->  y  =  { N ,  n }
) )
98cbvriotav 6622 . . . . 5  |-  ( iota_ z  e.  V  y  =  { N ,  z } )  =  (
iota_ n  e.  V  y  =  { N ,  n } )
107eqeq2d 2632 . . . . . 6  |-  ( z  =  n  ->  (
x  =  { N ,  z }  <->  x  =  { N ,  n }
) )
1110cbvriotav 6622 . . . . 5  |-  ( iota_ z  e.  V  x  =  { N ,  z } )  =  (
iota_ n  e.  V  x  =  { N ,  n } )
12 simpl 473 . . . . . . . 8  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  G  e. USPGraph  )
13 eleq2 2690 . . . . . . . . . . 11  |-  ( e  =  y  ->  ( N  e.  e  <->  N  e.  y ) )
1413, 3elrab2 3366 . . . . . . . . . 10  |-  ( y  e.  A  <->  ( y  e.  E  /\  N  e.  y ) )
152eleq2i 2693 . . . . . . . . . . . 12  |-  ( y  e.  E  <->  y  e.  (Edg `  G ) )
1615biimpi 206 . . . . . . . . . . 11  |-  ( y  e.  E  ->  y  e.  (Edg `  G )
)
1716anim1i 592 . . . . . . . . . 10  |-  ( ( y  e.  E  /\  N  e.  y )  ->  ( y  e.  (Edg
`  G )  /\  N  e.  y )
)
1814, 17sylbi 207 . . . . . . . . 9  |-  ( y  e.  A  ->  (
y  e.  (Edg `  G )  /\  N  e.  y ) )
1918adantr 481 . . . . . . . 8  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y  e.  (Edg
`  G )  /\  N  e.  y )
)
2012, 19anim12i 590 . . . . . . 7  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( G  e. USPGraph 
/\  ( y  e.  (Edg `  G )  /\  N  e.  y
) ) )
21 3anass 1042 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  y  e.  (Edg `  G )  /\  N  e.  y
)  <->  ( G  e. USPGraph  /\  ( y  e.  (Edg
`  G )  /\  N  e.  y )
) )
2220, 21sylibr 224 . . . . . 6  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( G  e. USPGraph 
/\  y  e.  (Edg
`  G )  /\  N  e.  y )
)
23 uspgredg2vtxeu 26112 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  y  e.  (Edg `  G )  /\  N  e.  y
)  ->  E! n  e.  (Vtx `  G )
y  =  { N ,  n } )
24 reueq1 3140 . . . . . . . 8  |-  ( V  =  (Vtx `  G
)  ->  ( E! n  e.  V  y  =  { N ,  n } 
<->  E! n  e.  (Vtx
`  G ) y  =  { N ,  n } ) )
251, 24ax-mp 5 . . . . . . 7  |-  ( E! n  e.  V  y  =  { N ,  n }  <->  E! n  e.  (Vtx
`  G ) y  =  { N ,  n } )
2623, 25sylibr 224 . . . . . 6  |-  ( ( G  e. USPGraph  /\  y  e.  (Edg `  G )  /\  N  e.  y
)  ->  E! n  e.  V  y  =  { N ,  n }
)
2722, 26syl 17 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  E! n  e.  V  y  =  { N ,  n }
)
28 eleq2 2690 . . . . . . . . . . 11  |-  ( e  =  x  ->  ( N  e.  e  <->  N  e.  x ) )
2928, 3elrab2 3366 . . . . . . . . . 10  |-  ( x  e.  A  <->  ( x  e.  E  /\  N  e.  x ) )
302eleq2i 2693 . . . . . . . . . . . 12  |-  ( x  e.  E  <->  x  e.  (Edg `  G ) )
3130biimpi 206 . . . . . . . . . . 11  |-  ( x  e.  E  ->  x  e.  (Edg `  G )
)
3231anim1i 592 . . . . . . . . . 10  |-  ( ( x  e.  E  /\  N  e.  x )  ->  ( x  e.  (Edg
`  G )  /\  N  e.  x )
)
3329, 32sylbi 207 . . . . . . . . 9  |-  ( x  e.  A  ->  (
x  e.  (Edg `  G )  /\  N  e.  x ) )
3433adantl 482 . . . . . . . 8  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( x  e.  (Edg
`  G )  /\  N  e.  x )
)
3512, 34anim12i 590 . . . . . . 7  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( G  e. USPGraph 
/\  ( x  e.  (Edg `  G )  /\  N  e.  x
) ) )
36 3anass 1042 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  x  e.  (Edg `  G )  /\  N  e.  x
)  <->  ( G  e. USPGraph  /\  ( x  e.  (Edg
`  G )  /\  N  e.  x )
) )
3735, 36sylibr 224 . . . . . 6  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( G  e. USPGraph 
/\  x  e.  (Edg
`  G )  /\  N  e.  x )
)
38 uspgredg2vtxeu 26112 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  x  e.  (Edg `  G )  /\  N  e.  x
)  ->  E! n  e.  (Vtx `  G )
x  =  { N ,  n } )
39 reueq1 3140 . . . . . . . 8  |-  ( V  =  (Vtx `  G
)  ->  ( E! n  e.  V  x  =  { N ,  n } 
<->  E! n  e.  (Vtx
`  G ) x  =  { N ,  n } ) )
401, 39ax-mp 5 . . . . . . 7  |-  ( E! n  e.  V  x  =  { N ,  n }  <->  E! n  e.  (Vtx
`  G ) x  =  { N ,  n } )
4138, 40sylibr 224 . . . . . 6  |-  ( ( G  e. USPGraph  /\  x  e.  (Edg `  G )  /\  N  e.  x
)  ->  E! n  e.  V  x  =  { N ,  n }
)
4237, 41syl 17 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  E! n  e.  V  x  =  { N ,  n }
)
439, 11, 27, 42riotaeqimp 6634 . . . 4  |-  ( ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  ( y  e.  A  /\  x  e.  A ) )  /\  ( iota_ z  e.  V  y  =  { N ,  z } )  =  ( iota_ z  e.  V  x  =  { N ,  z }
) )  ->  y  =  x )
4443ex 450 . . 3  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( ( iota_ z  e.  V  y  =  { N , 
z } )  =  ( iota_ z  e.  V  x  =  { N ,  z } )  ->  y  =  x ) )
4544ralrimivva 2971 . 2  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  A. y  e.  A  A. x  e.  A  ( ( iota_ z  e.  V  y  =  { N , 
z } )  =  ( iota_ z  e.  V  x  =  { N ,  z } )  ->  y  =  x ) )
46 uspgredg2v.f . . 3  |-  F  =  ( y  e.  A  |->  ( iota_ z  e.  V  y  =  { N ,  z } ) )
47 eqeq1 2626 . . . 4  |-  ( y  =  x  ->  (
y  =  { N ,  z }  <->  x  =  { N ,  z } ) )
4847riotabidv 6613 . . 3  |-  ( y  =  x  ->  ( iota_ z  e.  V  y  =  { N , 
z } )  =  ( iota_ z  e.  V  x  =  { N ,  z } ) )
4946, 48f1mpt 6518 . 2  |-  ( F : A -1-1-> V  <->  ( A. y  e.  A  ( iota_ z  e.  V  y  =  { N , 
z } )  e.  V  /\  A. y  e.  A  A. x  e.  A  ( ( iota_ z  e.  V  y  =  { N , 
z } )  =  ( iota_ z  e.  V  x  =  { N ,  z } )  ->  y  =  x ) ) )
506, 45, 49sylanbrc 698 1  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  F : A -1-1-> V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914   {crab 2916   {cpr 4179    |-> cmpt 4729   -1-1->wf1 5885   ` cfv 5888   iota_crio 6610  Vtxcvtx 25874  Edgcedg 25939   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-uspgr 26045
This theorem is referenced by:  uspgredgleord  26124
  Copyright terms: Public domain W3C validator