MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrel Structured version   Visualization version   Unicode version

Theorem rlimrel 14224
Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.)
Assertion
Ref Expression
rlimrel  |-  Rel  ~~> r

Proof of Theorem rlimrel
Dummy variables  w  x  y  z  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 14220 . 2  |-  ~~> r  =  { <. f ,  x >.  |  ( ( f  e.  ( CC  ^pm  RR )  /\  x  e.  CC )  /\  A. y  e.  RR+  E. z  e.  RR  A. w  e. 
dom  f ( z  <_  w  ->  ( abs `  ( ( f `
 w )  -  x ) )  < 
y ) ) }
21relopabi 5245 1  |-  Rel  ~~> r
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   dom cdm 5114   Rel wrel 5119   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832   abscabs 13974    ~~> r crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-rlim 14220
This theorem is referenced by:  rlim  14226  rlimpm  14231  rlimdm  14282  caucvgrlem2  14405  caucvgr  14406  rlimdmafv  41257
  Copyright terms: Public domain W3C validator