| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mo2 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of "at most one." (Contributed by NM, 8-Mar-1995.) Restrict dummy variable z. (Revised by Wolf Lammen, 28-May-2019.) |
| Ref | Expression |
|---|---|
| mo2.1 |
|
| Ref | Expression |
|---|---|
| mo2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo2v 2477 |
. 2
| |
| 2 | mo2.1 |
. . . . 5
| |
| 3 | nfv 1843 |
. . . . 5
| |
| 4 | 2, 3 | nfim 1825 |
. . . 4
|
| 5 | 4 | nfal 2153 |
. . 3
|
| 6 | nfv 1843 |
. . 3
| |
| 7 | equequ2 1953 |
. . . . 5
| |
| 8 | 7 | imbi2d 330 |
. . . 4
|
| 9 | 8 | albidv 1849 |
. . 3
|
| 10 | 5, 6, 9 | cbvex 2272 |
. 2
|
| 11 | 1, 10 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: mo3 2507 mo 2508 rmo2 3526 nmo 29325 bj-eu3f 32829 bj-mo3OLD 32832 dffun3f 42429 |
| Copyright terms: Public domain | W3C validator |