MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnco Structured version   Visualization version   Unicode version

Theorem rnco 5641
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
rnco  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )

Proof of Theorem rnco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6  |-  x  e. 
_V
2 vex 3203 . . . . . 6  |-  y  e. 
_V
31, 2brco 5292 . . . . 5  |-  ( x ( A  o.  B
) y  <->  E. z
( x B z  /\  z A y ) )
43exbii 1774 . . . 4  |-  ( E. x  x ( A  o.  B ) y  <->  E. x E. z ( x B z  /\  z A y ) )
5 excom 2042 . . . 4  |-  ( E. x E. z ( x B z  /\  z A y )  <->  E. z E. x ( x B z  /\  z A y ) )
6 ancom 466 . . . . . . 7  |-  ( ( E. x  x B z  /\  z A y )  <->  ( z A y  /\  E. x  x B z ) )
7 19.41v 1914 . . . . . . 7  |-  ( E. x ( x B z  /\  z A y )  <->  ( E. x  x B z  /\  z A y ) )
8 vex 3203 . . . . . . . . 9  |-  z  e. 
_V
98elrn 5366 . . . . . . . 8  |-  ( z  e.  ran  B  <->  E. x  x B z )
109anbi2i 730 . . . . . . 7  |-  ( ( z A y  /\  z  e.  ran  B )  <-> 
( z A y  /\  E. x  x B z ) )
116, 7, 103bitr4i 292 . . . . . 6  |-  ( E. x ( x B z  /\  z A y )  <->  ( z A y  /\  z  e.  ran  B ) )
122brres 5402 . . . . . 6  |-  ( z ( A  |`  ran  B
) y  <->  ( z A y  /\  z  e.  ran  B ) )
1311, 12bitr4i 267 . . . . 5  |-  ( E. x ( x B z  /\  z A y )  <->  z ( A  |`  ran  B ) y )
1413exbii 1774 . . . 4  |-  ( E. z E. x ( x B z  /\  z A y )  <->  E. z 
z ( A  |`  ran  B ) y )
154, 5, 143bitri 286 . . 3  |-  ( E. x  x ( A  o.  B ) y  <->  E. z  z ( A  |`  ran  B ) y )
162elrn 5366 . . 3  |-  ( y  e.  ran  ( A  o.  B )  <->  E. x  x ( A  o.  B ) y )
172elrn 5366 . . 3  |-  ( y  e.  ran  ( A  |`  ran  B )  <->  E. z 
z ( A  |`  ran  B ) y )
1815, 16, 173bitr4i 292 . 2  |-  ( y  e.  ran  ( A  o.  B )  <->  y  e.  ran  ( A  |`  ran  B
) )
1918eqriv 2619 1  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   class class class wbr 4653   ran crn 5115    |` cres 5116    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  rnco2  5642  coeq0  5644  cofunexg  7130  1stcof  7196  2ndcof  7197  smobeth  9408  elmsubrn  31425  ftc1anclem3  33487
  Copyright terms: Public domain W3C validator