| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ftc1anclem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for ftc1anc 33493- the absolute value of the sum of a simple
function
and |
| Ref | Expression |
|---|---|
| ftc1anclem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1ff 23443 |
. . . . . . . 8
| |
| 2 | 1 | ffvelrnda 6359 |
. . . . . . 7
|
| 3 | i1ff 23443 |
. . . . . . . 8
| |
| 4 | 3 | ffvelrnda 6359 |
. . . . . . 7
|
| 5 | absreim 14033 |
. . . . . . 7
| |
| 6 | 2, 4, 5 | syl2an 494 |
. . . . . 6
|
| 7 | 6 | anandirs 874 |
. . . . 5
|
| 8 | 2 | recnd 10068 |
. . . . . . . . 9
|
| 9 | 8 | sqvald 13005 |
. . . . . . . 8
|
| 10 | 4 | recnd 10068 |
. . . . . . . . 9
|
| 11 | 10 | sqvald 13005 |
. . . . . . . 8
|
| 12 | 9, 11 | oveqan12d 6669 |
. . . . . . 7
|
| 13 | 12 | anandirs 874 |
. . . . . 6
|
| 14 | 13 | fveq2d 6195 |
. . . . 5
|
| 15 | 7, 14 | eqtrd 2656 |
. . . 4
|
| 16 | 15 | mpteq2dva 4744 |
. . 3
|
| 17 | ax-icn 9995 |
. . . . . . 7
| |
| 18 | mulcl 10020 |
. . . . . . 7
| |
| 19 | 17, 10, 18 | sylancr 695 |
. . . . . 6
|
| 20 | addcl 10018 |
. . . . . 6
| |
| 21 | 8, 19, 20 | syl2an 494 |
. . . . 5
|
| 22 | 21 | anandirs 874 |
. . . 4
|
| 23 | reex 10027 |
. . . . . 6
| |
| 24 | 23 | a1i 11 |
. . . . 5
|
| 25 | 2 | adantlr 751 |
. . . . 5
|
| 26 | ovexd 6680 |
. . . . 5
| |
| 27 | 1 | feqmptd 6249 |
. . . . . 6
|
| 28 | 27 | adantr 481 |
. . . . 5
|
| 29 | 23 | a1i 11 |
. . . . . . 7
|
| 30 | 17 | a1i 11 |
. . . . . . 7
|
| 31 | fconstmpt 5163 |
. . . . . . . 8
| |
| 32 | 31 | a1i 11 |
. . . . . . 7
|
| 33 | 3 | feqmptd 6249 |
. . . . . . 7
|
| 34 | 29, 30, 4, 32, 33 | offval2 6914 |
. . . . . 6
|
| 35 | 34 | adantl 482 |
. . . . 5
|
| 36 | 24, 25, 26, 28, 35 | offval2 6914 |
. . . 4
|
| 37 | absf 14077 |
. . . . . 6
| |
| 38 | 37 | a1i 11 |
. . . . 5
|
| 39 | 38 | feqmptd 6249 |
. . . 4
|
| 40 | fveq2 6191 |
. . . 4
| |
| 41 | 22, 36, 39, 40 | fmptco 6396 |
. . 3
|
| 42 | 8, 8 | mulcld 10060 |
. . . . . 6
|
| 43 | 10, 10 | mulcld 10060 |
. . . . . 6
|
| 44 | addcl 10018 |
. . . . . 6
| |
| 45 | 42, 43, 44 | syl2an 494 |
. . . . 5
|
| 46 | 45 | anandirs 874 |
. . . 4
|
| 47 | 42 | adantlr 751 |
. . . . 5
|
| 48 | 43 | adantll 750 |
. . . . 5
|
| 49 | 23 | a1i 11 |
. . . . . . 7
|
| 50 | 49, 2, 2, 27, 27 | offval2 6914 |
. . . . . 6
|
| 51 | 50 | adantr 481 |
. . . . 5
|
| 52 | 29, 4, 4, 33, 33 | offval2 6914 |
. . . . . 6
|
| 53 | 52 | adantl 482 |
. . . . 5
|
| 54 | 24, 47, 48, 51, 53 | offval2 6914 |
. . . 4
|
| 55 | sqrtf 14103 |
. . . . . 6
| |
| 56 | 55 | a1i 11 |
. . . . 5
|
| 57 | 56 | feqmptd 6249 |
. . . 4
|
| 58 | fveq2 6191 |
. . . 4
| |
| 59 | 46, 54, 57, 58 | fmptco 6396 |
. . 3
|
| 60 | 16, 41, 59 | 3eqtr4d 2666 |
. 2
|
| 61 | elrege0 12278 |
. . . . . . 7
| |
| 62 | resqrtcl 13994 |
. . . . . . 7
| |
| 63 | 61, 62 | sylbi 207 |
. . . . . 6
|
| 64 | 63 | adantl 482 |
. . . . 5
|
| 65 | id 22 |
. . . . . . . . 9
| |
| 66 | 65 | feqmptd 6249 |
. . . . . . . 8
|
| 67 | 55, 66 | ax-mp 5 |
. . . . . . 7
|
| 68 | 67 | reseq1i 5392 |
. . . . . 6
|
| 69 | rge0ssre 12280 |
. . . . . . . 8
| |
| 70 | ax-resscn 9993 |
. . . . . . . 8
| |
| 71 | 69, 70 | sstri 3612 |
. . . . . . 7
|
| 72 | resmpt 5449 |
. . . . . . 7
| |
| 73 | 71, 72 | ax-mp 5 |
. . . . . 6
|
| 74 | 68, 73 | eqtri 2644 |
. . . . 5
|
| 75 | 64, 74 | fmptd 6385 |
. . . 4
|
| 76 | ge0addcl 12284 |
. . . . . 6
| |
| 77 | 76 | adantl 482 |
. . . . 5
|
| 78 | oveq12 6659 |
. . . . . . . . 9
| |
| 79 | 78 | anidms 677 |
. . . . . . . 8
|
| 80 | 79 | feq1d 6030 |
. . . . . . 7
|
| 81 | i1ff 23443 |
. . . . . . . . . . . 12
| |
| 82 | 81 | ffvelrnda 6359 |
. . . . . . . . . . 11
|
| 83 | 82, 82 | remulcld 10070 |
. . . . . . . . . 10
|
| 84 | 82 | msqge0d 10596 |
. . . . . . . . . 10
|
| 85 | elrege0 12278 |
. . . . . . . . . 10
| |
| 86 | 83, 84, 85 | sylanbrc 698 |
. . . . . . . . 9
|
| 87 | eqid 2622 |
. . . . . . . . 9
| |
| 88 | 86, 87 | fmptd 6385 |
. . . . . . . 8
|
| 89 | 23 | a1i 11 |
. . . . . . . . . 10
|
| 90 | 81 | feqmptd 6249 |
. . . . . . . . . 10
|
| 91 | 89, 82, 82, 90, 90 | offval2 6914 |
. . . . . . . . 9
|
| 92 | 91 | feq1d 6030 |
. . . . . . . 8
|
| 93 | 88, 92 | mpbird 247 |
. . . . . . 7
|
| 94 | 80, 93 | vtoclga 3272 |
. . . . . 6
|
| 95 | 94 | adantr 481 |
. . . . 5
|
| 96 | oveq12 6659 |
. . . . . . . . 9
| |
| 97 | 96 | anidms 677 |
. . . . . . . 8
|
| 98 | 97 | feq1d 6030 |
. . . . . . 7
|
| 99 | 98, 93 | vtoclga 3272 |
. . . . . 6
|
| 100 | 99 | adantl 482 |
. . . . 5
|
| 101 | inidm 3822 |
. . . . 5
| |
| 102 | 77, 95, 100, 24, 24, 101 | off 6912 |
. . . 4
|
| 103 | fco2 6059 |
. . . 4
| |
| 104 | 75, 102, 103 | syl2anc 693 |
. . 3
|
| 105 | rnco 5641 |
. . . 4
| |
| 106 | ffn 6045 |
. . . . . . . 8
| |
| 107 | 55, 106 | ax-mp 5 |
. . . . . . 7
|
| 108 | readdcl 10019 |
. . . . . . . . . . 11
| |
| 109 | 108 | adantl 482 |
. . . . . . . . . 10
|
| 110 | remulcl 10021 |
. . . . . . . . . . . . 13
| |
| 111 | 110 | adantl 482 |
. . . . . . . . . . . 12
|
| 112 | 111, 1, 1, 49, 49, 101 | off 6912 |
. . . . . . . . . . 11
|
| 113 | 112 | adantr 481 |
. . . . . . . . . 10
|
| 114 | 110 | adantl 482 |
. . . . . . . . . . . 12
|
| 115 | 114, 3, 3, 29, 29, 101 | off 6912 |
. . . . . . . . . . 11
|
| 116 | 115 | adantl 482 |
. . . . . . . . . 10
|
| 117 | 109, 113, 116, 24, 24, 101 | off 6912 |
. . . . . . . . 9
|
| 118 | frn 6053 |
. . . . . . . . 9
| |
| 119 | 117, 118 | syl 17 |
. . . . . . . 8
|
| 120 | 119, 70 | syl6ss 3615 |
. . . . . . 7
|
| 121 | fnssres 6004 |
. . . . . . 7
| |
| 122 | 107, 120, 121 | sylancr 695 |
. . . . . 6
|
| 123 | id 22 |
. . . . . . . . . 10
| |
| 124 | 123, 123 | i1fmul 23463 |
. . . . . . . . 9
|
| 125 | 124 | adantr 481 |
. . . . . . . 8
|
| 126 | id 22 |
. . . . . . . . . 10
| |
| 127 | 126, 126 | i1fmul 23463 |
. . . . . . . . 9
|
| 128 | 127 | adantl 482 |
. . . . . . . 8
|
| 129 | 125, 128 | i1fadd 23462 |
. . . . . . 7
|
| 130 | i1frn 23444 |
. . . . . . 7
| |
| 131 | 129, 130 | syl 17 |
. . . . . 6
|
| 132 | fnfi 8238 |
. . . . . 6
| |
| 133 | 122, 131, 132 | syl2anc 693 |
. . . . 5
|
| 134 | rnfi 8249 |
. . . . 5
| |
| 135 | 133, 134 | syl 17 |
. . . 4
|
| 136 | 105, 135 | syl5eqel 2705 |
. . 3
|
| 137 | cnvco 5308 |
. . . . . . 7
| |
| 138 | 137 | imaeq1i 5463 |
. . . . . 6
|
| 139 | imaco 5640 |
. . . . . 6
| |
| 140 | 138, 139 | eqtri 2644 |
. . . . 5
|
| 141 | i1fima 23445 |
. . . . . 6
| |
| 142 | 129, 141 | syl 17 |
. . . . 5
|
| 143 | 140, 142 | syl5eqel 2705 |
. . . 4
|
| 144 | 143 | adantr 481 |
. . 3
|
| 145 | 140 | fveq2i 6194 |
. . . 4
|
| 146 | eldifsni 4320 |
. . . . . . . 8
| |
| 147 | c0ex 10034 |
. . . . . . . . . . . 12
| |
| 148 | 147 | elsn 4192 |
. . . . . . . . . . 11
|
| 149 | eqcom 2629 |
. . . . . . . . . . 11
| |
| 150 | 148, 149 | bitri 264 |
. . . . . . . . . 10
|
| 151 | 150 | necon3bbii 2841 |
. . . . . . . . 9
|
| 152 | sqrt0 13982 |
. . . . . . . . . 10
| |
| 153 | 152 | eleq1i 2692 |
. . . . . . . . 9
|
| 154 | 151, 153 | xchnxbir 323 |
. . . . . . . 8
|
| 155 | 146, 154 | sylibr 224 |
. . . . . . 7
|
| 156 | 155 | olcd 408 |
. . . . . 6
|
| 157 | ianor 509 |
. . . . . . 7
| |
| 158 | elpreima 6337 |
. . . . . . . 8
| |
| 159 | 55, 106, 158 | mp2b 10 |
. . . . . . 7
|
| 160 | 157, 159 | xchnxbir 323 |
. . . . . 6
|
| 161 | 156, 160 | sylibr 224 |
. . . . 5
|
| 162 | i1fima2 23446 |
. . . . 5
| |
| 163 | 129, 161, 162 | syl2an 494 |
. . . 4
|
| 164 | 145, 163 | syl5eqel 2705 |
. . 3
|
| 165 | 104, 136, 144, 164 | i1fd 23448 |
. 2
|
| 166 | 60, 165 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xadd 11947 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-xmet 19739 df-met 19740 df-ovol 23233 df-vol 23234 df-mbf 23388 df-itg1 23389 |
| This theorem is referenced by: ftc1anclem7 33491 ftc1anclem8 33492 |
| Copyright terms: Public domain | W3C validator |