Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem3 Structured version   Visualization version   Unicode version

Theorem ftc1anclem3 33487
Description: Lemma for ftc1anc 33493- the absolute value of the sum of a simple function and  _i times another simple function is itself a simple function. (Contributed by Brendan Leahy, 27-May-2018.)
Assertion
Ref Expression
ftc1anclem3  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( abs  o.  ( F  oF  +  ( ( RR 
X.  { _i }
)  oF  x.  G ) ) )  e.  dom  S.1 )

Proof of Theorem ftc1anclem3
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 23443 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
21ffvelrnda 6359 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
3 i1ff 23443 . . . . . . . 8  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
43ffvelrnda 6359 . . . . . . 7  |-  ( ( G  e.  dom  S.1  /\  x  e.  RR )  ->  ( G `  x )  e.  RR )
5 absreim 14033 . . . . . . 7  |-  ( ( ( F `  x
)  e.  RR  /\  ( G `  x )  e.  RR )  -> 
( abs `  (
( F `  x
)  +  ( _i  x.  ( G `  x ) ) ) )  =  ( sqr `  ( ( ( F `
 x ) ^
2 )  +  ( ( G `  x
) ^ 2 ) ) ) )
62, 4, 5syl2an 494 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  x  e.  RR )  /\  ( G  e. 
dom  S.1  /\  x  e.  RR ) )  -> 
( abs `  (
( F `  x
)  +  ( _i  x.  ( G `  x ) ) ) )  =  ( sqr `  ( ( ( F `
 x ) ^
2 )  +  ( ( G `  x
) ^ 2 ) ) ) )
76anandirs 874 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  ( abs `  ( ( F `
 x )  +  ( _i  x.  ( G `  x )
) ) )  =  ( sqr `  (
( ( F `  x ) ^ 2 )  +  ( ( G `  x ) ^ 2 ) ) ) )
82recnd 10068 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( F `  x )  e.  CC )
98sqvald 13005 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( ( F `
 x ) ^
2 )  =  ( ( F `  x
)  x.  ( F `
 x ) ) )
104recnd 10068 . . . . . . . . 9  |-  ( ( G  e.  dom  S.1  /\  x  e.  RR )  ->  ( G `  x )  e.  CC )
1110sqvald 13005 . . . . . . . 8  |-  ( ( G  e.  dom  S.1  /\  x  e.  RR )  ->  ( ( G `
 x ) ^
2 )  =  ( ( G `  x
)  x.  ( G `
 x ) ) )
129, 11oveqan12d 6669 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  x  e.  RR )  /\  ( G  e. 
dom  S.1  /\  x  e.  RR ) )  -> 
( ( ( F `
 x ) ^
2 )  +  ( ( G `  x
) ^ 2 ) )  =  ( ( ( F `  x
)  x.  ( F `
 x ) )  +  ( ( G `
 x )  x.  ( G `  x
) ) ) )
1312anandirs 874 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  (
( ( F `  x ) ^ 2 )  +  ( ( G `  x ) ^ 2 ) )  =  ( ( ( F `  x )  x.  ( F `  x ) )  +  ( ( G `  x )  x.  ( G `  x )
) ) )
1413fveq2d 6195 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  ( sqr `  ( ( ( F `  x ) ^ 2 )  +  ( ( G `  x ) ^ 2 ) ) )  =  ( sqr `  (
( ( F `  x )  x.  ( F `  x )
)  +  ( ( G `  x )  x.  ( G `  x ) ) ) ) )
157, 14eqtrd 2656 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  ( abs `  ( ( F `
 x )  +  ( _i  x.  ( G `  x )
) ) )  =  ( sqr `  (
( ( F `  x )  x.  ( F `  x )
)  +  ( ( G `  x )  x.  ( G `  x ) ) ) ) )
1615mpteq2dva 4744 . . 3  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( x  e.  RR  |->  ( abs `  (
( F `  x
)  +  ( _i  x.  ( G `  x ) ) ) ) )  =  ( x  e.  RR  |->  ( sqr `  ( ( ( F `  x
)  x.  ( F `
 x ) )  +  ( ( G `
 x )  x.  ( G `  x
) ) ) ) ) )
17 ax-icn 9995 . . . . . . 7  |-  _i  e.  CC
18 mulcl 10020 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( G `  x )  e.  CC )  -> 
( _i  x.  ( G `  x )
)  e.  CC )
1917, 10, 18sylancr 695 . . . . . 6  |-  ( ( G  e.  dom  S.1  /\  x  e.  RR )  ->  ( _i  x.  ( G `  x ) )  e.  CC )
20 addcl 10018 . . . . . 6  |-  ( ( ( F `  x
)  e.  CC  /\  ( _i  x.  ( G `  x )
)  e.  CC )  ->  ( ( F `
 x )  +  ( _i  x.  ( G `  x )
) )  e.  CC )
218, 19, 20syl2an 494 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  x  e.  RR )  /\  ( G  e. 
dom  S.1  /\  x  e.  RR ) )  -> 
( ( F `  x )  +  ( _i  x.  ( G `
 x ) ) )  e.  CC )
2221anandirs 874 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  (
( F `  x
)  +  ( _i  x.  ( G `  x ) ) )  e.  CC )
23 reex 10027 . . . . . 6  |-  RR  e.  _V
2423a1i 11 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  RR  e.  _V )
252adantlr 751 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
26 ovexd 6680 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  (
_i  x.  ( G `  x ) )  e. 
_V )
271feqmptd 6249 . . . . . 6  |-  ( F  e.  dom  S.1  ->  F  =  ( x  e.  RR  |->  ( F `  x ) ) )
2827adantr 481 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  F  =  ( x  e.  RR  |->  ( F `  x ) ) )
2923a1i 11 . . . . . . 7  |-  ( G  e.  dom  S.1  ->  RR  e.  _V )
3017a1i 11 . . . . . . 7  |-  ( ( G  e.  dom  S.1  /\  x  e.  RR )  ->  _i  e.  CC )
31 fconstmpt 5163 . . . . . . . 8  |-  ( RR 
X.  { _i }
)  =  ( x  e.  RR  |->  _i )
3231a1i 11 . . . . . . 7  |-  ( G  e.  dom  S.1  ->  ( RR  X.  { _i } )  =  ( x  e.  RR  |->  _i ) )
333feqmptd 6249 . . . . . . 7  |-  ( G  e.  dom  S.1  ->  G  =  ( x  e.  RR  |->  ( G `  x ) ) )
3429, 30, 4, 32, 33offval2 6914 . . . . . 6  |-  ( G  e.  dom  S.1  ->  ( ( RR  X.  {
_i } )  oF  x.  G )  =  ( x  e.  RR  |->  ( _i  x.  ( G `  x ) ) ) )
3534adantl 482 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( ( RR 
X.  { _i }
)  oF  x.  G )  =  ( x  e.  RR  |->  ( _i  x.  ( G `
 x ) ) ) )
3624, 25, 26, 28, 35offval2 6914 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( F  oF  +  ( ( RR  X.  { _i }
)  oF  x.  G ) )  =  ( x  e.  RR  |->  ( ( F `  x )  +  ( _i  x.  ( G `
 x ) ) ) ) )
37 absf 14077 . . . . . 6  |-  abs : CC
--> RR
3837a1i 11 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  abs : CC --> RR )
3938feqmptd 6249 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  abs  =  (
y  e.  CC  |->  ( abs `  y ) ) )
40 fveq2 6191 . . . 4  |-  ( y  =  ( ( F `
 x )  +  ( _i  x.  ( G `  x )
) )  ->  ( abs `  y )  =  ( abs `  (
( F `  x
)  +  ( _i  x.  ( G `  x ) ) ) ) )
4122, 36, 39, 40fmptco 6396 . . 3  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( abs  o.  ( F  oF  +  ( ( RR 
X.  { _i }
)  oF  x.  G ) ) )  =  ( x  e.  RR  |->  ( abs `  (
( F `  x
)  +  ( _i  x.  ( G `  x ) ) ) ) ) )
428, 8mulcld 10060 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( ( F `
 x )  x.  ( F `  x
) )  e.  CC )
4310, 10mulcld 10060 . . . . . 6  |-  ( ( G  e.  dom  S.1  /\  x  e.  RR )  ->  ( ( G `
 x )  x.  ( G `  x
) )  e.  CC )
44 addcl 10018 . . . . . 6  |-  ( ( ( ( F `  x )  x.  ( F `  x )
)  e.  CC  /\  ( ( G `  x )  x.  ( G `  x )
)  e.  CC )  ->  ( ( ( F `  x )  x.  ( F `  x ) )  +  ( ( G `  x )  x.  ( G `  x )
) )  e.  CC )
4542, 43, 44syl2an 494 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  x  e.  RR )  /\  ( G  e. 
dom  S.1  /\  x  e.  RR ) )  -> 
( ( ( F `
 x )  x.  ( F `  x
) )  +  ( ( G `  x
)  x.  ( G `
 x ) ) )  e.  CC )
4645anandirs 874 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  (
( ( F `  x )  x.  ( F `  x )
)  +  ( ( G `  x )  x.  ( G `  x ) ) )  e.  CC )
4742adantlr 751 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  (
( F `  x
)  x.  ( F `
 x ) )  e.  CC )
4843adantll 750 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  RR )  ->  (
( G `  x
)  x.  ( G `
 x ) )  e.  CC )
4923a1i 11 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  RR  e.  _V )
5049, 2, 2, 27, 27offval2 6914 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( F  oF  x.  F )  =  ( x  e.  RR  |->  ( ( F `  x
)  x.  ( F `
 x ) ) ) )
5150adantr 481 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( F  oF  x.  F )  =  ( x  e.  RR  |->  ( ( F `
 x )  x.  ( F `  x
) ) ) )
5229, 4, 4, 33, 33offval2 6914 . . . . . 6  |-  ( G  e.  dom  S.1  ->  ( G  oF  x.  G )  =  ( x  e.  RR  |->  ( ( G `  x
)  x.  ( G `
 x ) ) ) )
5352adantl 482 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( G  oF  x.  G )  =  ( x  e.  RR  |->  ( ( G `
 x )  x.  ( G `  x
) ) ) )
5424, 47, 48, 51, 53offval2 6914 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  =  ( x  e.  RR  |->  ( ( ( F `
 x )  x.  ( F `  x
) )  +  ( ( G `  x
)  x.  ( G `
 x ) ) ) ) )
55 sqrtf 14103 . . . . . 6  |-  sqr : CC
--> CC
5655a1i 11 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  sqr : CC --> CC )
5756feqmptd 6249 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  sqr  =  (
y  e.  CC  |->  ( sqr `  y ) ) )
58 fveq2 6191 . . . 4  |-  ( y  =  ( ( ( F `  x )  x.  ( F `  x ) )  +  ( ( G `  x )  x.  ( G `  x )
) )  ->  ( sqr `  y )  =  ( sqr `  (
( ( F `  x )  x.  ( F `  x )
)  +  ( ( G `  x )  x.  ( G `  x ) ) ) ) )
5946, 54, 57, 58fmptco 6396 . . 3  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( sqr  o.  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) )  =  ( x  e.  RR  |->  ( sqr `  ( ( ( F `  x
)  x.  ( F `
 x ) )  +  ( ( G `
 x )  x.  ( G `  x
) ) ) ) ) )
6016, 41, 593eqtr4d 2666 . 2  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( abs  o.  ( F  oF  +  ( ( RR 
X.  { _i }
)  oF  x.  G ) ) )  =  ( sqr  o.  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) ) )
61 elrege0 12278 . . . . . . 7  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
62 resqrtcl 13994 . . . . . . 7  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( sqr `  x
)  e.  RR )
6361, 62sylbi 207 . . . . . 6  |-  ( x  e.  ( 0 [,) +oo )  ->  ( sqr `  x )  e.  RR )
6463adantl 482 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  ( 0 [,) +oo ) )  ->  ( sqr `  x )  e.  RR )
65 id 22 . . . . . . . . 9  |-  ( sqr
: CC --> CC  ->  sqr
: CC --> CC )
6665feqmptd 6249 . . . . . . . 8  |-  ( sqr
: CC --> CC  ->  sqr  =  ( x  e.  CC  |->  ( sqr `  x
) ) )
6755, 66ax-mp 5 . . . . . . 7  |-  sqr  =  ( x  e.  CC  |->  ( sqr `  x ) )
6867reseq1i 5392 . . . . . 6  |-  ( sqr  |`  ( 0 [,) +oo ) )  =  ( ( x  e.  CC  |->  ( sqr `  x ) )  |`  ( 0 [,) +oo ) )
69 rge0ssre 12280 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  RR
70 ax-resscn 9993 . . . . . . . 8  |-  RR  C_  CC
7169, 70sstri 3612 . . . . . . 7  |-  ( 0 [,) +oo )  C_  CC
72 resmpt 5449 . . . . . . 7  |-  ( ( 0 [,) +oo )  C_  CC  ->  ( (
x  e.  CC  |->  ( sqr `  x ) )  |`  ( 0 [,) +oo ) )  =  ( x  e.  ( 0 [,) +oo )  |->  ( sqr `  x
) ) )
7371, 72ax-mp 5 . . . . . 6  |-  ( ( x  e.  CC  |->  ( sqr `  x ) )  |`  ( 0 [,) +oo ) )  =  ( x  e.  ( 0 [,) +oo )  |->  ( sqr `  x
) )
7468, 73eqtri 2644 . . . . 5  |-  ( sqr  |`  ( 0 [,) +oo ) )  =  ( x  e.  ( 0 [,) +oo )  |->  ( sqr `  x ) )
7564, 74fmptd 6385 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( sqr  |`  (
0 [,) +oo )
) : ( 0 [,) +oo ) --> RR )
76 ge0addcl 12284 . . . . . 6  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  +  y )  e.  ( 0 [,) +oo )
)
7776adantl 482 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) ) )  -> 
( x  +  y )  e.  ( 0 [,) +oo ) )
78 oveq12 6659 . . . . . . . . 9  |-  ( ( z  =  F  /\  z  =  F )  ->  ( z  oF  x.  z )  =  ( F  oF  x.  F ) )
7978anidms 677 . . . . . . . 8  |-  ( z  =  F  ->  (
z  oF  x.  z )  =  ( F  oF  x.  F ) )
8079feq1d 6030 . . . . . . 7  |-  ( z  =  F  ->  (
( z  oF  x.  z ) : RR --> ( 0 [,) +oo )  <->  ( F  oF  x.  F ) : RR --> ( 0 [,) +oo ) ) )
81 i1ff 23443 . . . . . . . . . . . 12  |-  ( z  e.  dom  S.1  ->  z : RR --> RR )
8281ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( z  e.  dom  S.1  /\  x  e.  RR )  ->  ( z `  x )  e.  RR )
8382, 82remulcld 10070 . . . . . . . . . 10  |-  ( ( z  e.  dom  S.1  /\  x  e.  RR )  ->  ( ( z `
 x )  x.  ( z `  x
) )  e.  RR )
8482msqge0d 10596 . . . . . . . . . 10  |-  ( ( z  e.  dom  S.1  /\  x  e.  RR )  ->  0  <_  (
( z `  x
)  x.  ( z `
 x ) ) )
85 elrege0 12278 . . . . . . . . . 10  |-  ( ( ( z `  x
)  x.  ( z `
 x ) )  e.  ( 0 [,) +oo )  <->  ( ( ( z `  x )  x.  ( z `  x ) )  e.  RR  /\  0  <_ 
( ( z `  x )  x.  (
z `  x )
) ) )
8683, 84, 85sylanbrc 698 . . . . . . . . 9  |-  ( ( z  e.  dom  S.1  /\  x  e.  RR )  ->  ( ( z `
 x )  x.  ( z `  x
) )  e.  ( 0 [,) +oo )
)
87 eqid 2622 . . . . . . . . 9  |-  ( x  e.  RR  |->  ( ( z `  x )  x.  ( z `  x ) ) )  =  ( x  e.  RR  |->  ( ( z `
 x )  x.  ( z `  x
) ) )
8886, 87fmptd 6385 . . . . . . . 8  |-  ( z  e.  dom  S.1  ->  ( x  e.  RR  |->  ( ( z `  x
)  x.  ( z `
 x ) ) ) : RR --> ( 0 [,) +oo ) )
8923a1i 11 . . . . . . . . . 10  |-  ( z  e.  dom  S.1  ->  RR  e.  _V )
9081feqmptd 6249 . . . . . . . . . 10  |-  ( z  e.  dom  S.1  ->  z  =  ( x  e.  RR  |->  ( z `  x ) ) )
9189, 82, 82, 90, 90offval2 6914 . . . . . . . . 9  |-  ( z  e.  dom  S.1  ->  ( z  oF  x.  z )  =  ( x  e.  RR  |->  ( ( z `  x
)  x.  ( z `
 x ) ) ) )
9291feq1d 6030 . . . . . . . 8  |-  ( z  e.  dom  S.1  ->  ( ( z  oF  x.  z ) : RR --> ( 0 [,) +oo )  <->  ( x  e.  RR  |->  ( ( z `
 x )  x.  ( z `  x
) ) ) : RR --> ( 0 [,) +oo ) ) )
9388, 92mpbird 247 . . . . . . 7  |-  ( z  e.  dom  S.1  ->  ( z  oF  x.  z ) : RR --> ( 0 [,) +oo ) )
9480, 93vtoclga 3272 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( F  oF  x.  F ) : RR --> ( 0 [,) +oo ) )
9594adantr 481 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( F  oF  x.  F ) : RR --> ( 0 [,) +oo ) )
96 oveq12 6659 . . . . . . . . 9  |-  ( ( z  =  G  /\  z  =  G )  ->  ( z  oF  x.  z )  =  ( G  oF  x.  G ) )
9796anidms 677 . . . . . . . 8  |-  ( z  =  G  ->  (
z  oF  x.  z )  =  ( G  oF  x.  G ) )
9897feq1d 6030 . . . . . . 7  |-  ( z  =  G  ->  (
( z  oF  x.  z ) : RR --> ( 0 [,) +oo )  <->  ( G  oF  x.  G ) : RR --> ( 0 [,) +oo ) ) )
9998, 93vtoclga 3272 . . . . . 6  |-  ( G  e.  dom  S.1  ->  ( G  oF  x.  G ) : RR --> ( 0 [,) +oo ) )
10099adantl 482 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( G  oF  x.  G ) : RR --> ( 0 [,) +oo ) )
101 inidm 3822 . . . . 5  |-  ( RR 
i^i  RR )  =  RR
10277, 95, 100, 24, 24, 101off 6912 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) : RR --> ( 0 [,) +oo ) )
103 fco2 6059 . . . 4  |-  ( ( ( sqr  |`  (
0 [,) +oo )
) : ( 0 [,) +oo ) --> RR 
/\  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) : RR --> ( 0 [,) +oo ) )  ->  ( sqr  o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) ) : RR --> RR )
10475, 102, 103syl2anc 693 . . 3  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( sqr  o.  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) ) : RR --> RR )
105 rnco 5641 . . . 4  |-  ran  ( sqr  o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) )  =  ran  ( sqr  |`  ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) )
106 ffn 6045 . . . . . . . 8  |-  ( sqr
: CC --> CC  ->  sqr 
Fn  CC )
10755, 106ax-mp 5 . . . . . . 7  |-  sqr  Fn  CC
108 readdcl 10019 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
109108adantl 482 . . . . . . . . . 10  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  +  y )  e.  RR )
110 remulcl 10021 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
111110adantl 482 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S.1  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  x.  y )  e.  RR )
112111, 1, 1, 49, 49, 101off 6912 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  ( F  oF  x.  F ) : RR --> RR )
113112adantr 481 . . . . . . . . . 10  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( F  oF  x.  F ) : RR --> RR )
114110adantl 482 . . . . . . . . . . . 12  |-  ( ( G  e.  dom  S.1  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  x.  y )  e.  RR )
115114, 3, 3, 29, 29, 101off 6912 . . . . . . . . . . 11  |-  ( G  e.  dom  S.1  ->  ( G  oF  x.  G ) : RR --> RR )
116115adantl 482 . . . . . . . . . 10  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( G  oF  x.  G ) : RR --> RR )
117109, 113, 116, 24, 24, 101off 6912 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) : RR --> RR )
118 frn 6053 . . . . . . . . 9  |-  ( ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) : RR --> RR  ->  ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  C_  RR )
119117, 118syl 17 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  C_  RR )
120119, 70syl6ss 3615 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  C_  CC )
121 fnssres 6004 . . . . . . 7  |-  ( ( sqr  Fn  CC  /\  ran  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) )  C_  CC )  ->  ( sqr  |`  ran  (
( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) )  Fn 
ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) )
122107, 120, 121sylancr 695 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( sqr  |`  ran  (
( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) )  Fn 
ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) )
123 id 22 . . . . . . . . . 10  |-  ( F  e.  dom  S.1  ->  F  e.  dom  S.1 )
124123, 123i1fmul 23463 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( F  oF  x.  F )  e.  dom  S.1 )
125124adantr 481 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( F  oF  x.  F )  e.  dom  S.1 )
126 id 22 . . . . . . . . . 10  |-  ( G  e.  dom  S.1  ->  G  e.  dom  S.1 )
127126, 126i1fmul 23463 . . . . . . . . 9  |-  ( G  e.  dom  S.1  ->  ( G  oF  x.  G )  e.  dom  S.1 )
128127adantl 482 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( G  oF  x.  G )  e.  dom  S.1 )
129125, 128i1fadd 23462 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  e. 
dom  S.1 )
130 i1frn 23444 . . . . . . 7  |-  ( ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) )  e.  dom  S.1 
->  ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  e. 
Fin )
131129, 130syl 17 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  e. 
Fin )
132 fnfi 8238 . . . . . 6  |-  ( ( ( sqr  |`  ran  (
( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) )  Fn 
ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  /\  ran  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) )  e.  Fin )  ->  ( sqr  |`  ran  (
( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) )  e. 
Fin )
133122, 131, 132syl2anc 693 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( sqr  |`  ran  (
( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) )  e. 
Fin )
134 rnfi 8249 . . . . 5  |-  ( ( sqr  |`  ran  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G )
) )  e.  Fin  ->  ran  ( sqr  |`  ran  (
( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) )  e. 
Fin )
135133, 134syl 17 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ran  ( sqr  |` 
ran  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) )  e.  Fin )
136105, 135syl5eqel 2705 . . 3  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ran  ( sqr  o.  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) )  e. 
Fin )
137 cnvco 5308 . . . . . . 7  |-  `' ( sqr  o.  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G )
) )  =  ( `' ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  o.  `' sqr )
138137imaeq1i 5463 . . . . . 6  |-  ( `' ( sqr  o.  (
( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) ) " { x } )  =  ( ( `' ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) )  o.  `' sqr ) " { x } )
139 imaco 5640 . . . . . 6  |-  ( ( `' ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) )  o.  `' sqr ) " {
x } )  =  ( `' ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G )
) " ( `' sqr " { x } ) )
140138, 139eqtri 2644 . . . . 5  |-  ( `' ( sqr  o.  (
( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) ) " { x } )  =  ( `' ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) " ( `' sqr " { x } ) )
141 i1fima 23445 . . . . . 6  |-  ( ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) )  e.  dom  S.1 
->  ( `' ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G )
) " ( `' sqr " { x } ) )  e. 
dom  vol )
142129, 141syl 17 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( `' ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) " ( `' sqr " { x } ) )  e. 
dom  vol )
143140, 142syl5eqel 2705 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( `' ( sqr  o.  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G )
) ) " {
x } )  e. 
dom  vol )
144143adantr 481 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  ( ran  ( sqr 
o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) ) 
\  { 0 } ) )  ->  ( `' ( sqr  o.  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) ) " { x } )  e.  dom  vol )
145140fveq2i 6194 . . . 4  |-  ( vol `  ( `' ( sqr 
o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) )
" { x }
) )  =  ( vol `  ( `' ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) " ( `' sqr " { x } ) ) )
146 eldifsni 4320 . . . . . . . 8  |-  ( x  e.  ( ran  ( sqr  o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) ) 
\  { 0 } )  ->  x  =/=  0 )
147 c0ex 10034 . . . . . . . . . . . 12  |-  0  e.  _V
148147elsn 4192 . . . . . . . . . . 11  |-  ( 0  e.  { x }  <->  0  =  x )
149 eqcom 2629 . . . . . . . . . . 11  |-  ( 0  =  x  <->  x  = 
0 )
150148, 149bitri 264 . . . . . . . . . 10  |-  ( 0  e.  { x }  <->  x  =  0 )
151150necon3bbii 2841 . . . . . . . . 9  |-  ( -.  0  e.  { x } 
<->  x  =/=  0 )
152 sqrt0 13982 . . . . . . . . . 10  |-  ( sqr `  0 )  =  0
153152eleq1i 2692 . . . . . . . . 9  |-  ( ( sqr `  0 )  e.  { x }  <->  0  e.  { x }
)
154151, 153xchnxbir 323 . . . . . . . 8  |-  ( -.  ( sqr `  0
)  e.  { x } 
<->  x  =/=  0 )
155146, 154sylibr 224 . . . . . . 7  |-  ( x  e.  ( ran  ( sqr  o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) ) 
\  { 0 } )  ->  -.  ( sqr `  0 )  e. 
{ x } )
156155olcd 408 . . . . . 6  |-  ( x  e.  ( ran  ( sqr  o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) ) 
\  { 0 } )  ->  ( -.  0  e.  CC  \/  -.  ( sqr `  0
)  e.  { x } ) )
157 ianor 509 . . . . . . 7  |-  ( -.  ( 0  e.  CC  /\  ( sqr `  0
)  e.  { x } )  <->  ( -.  0  e.  CC  \/  -.  ( sqr `  0
)  e.  { x } ) )
158 elpreima 6337 . . . . . . . 8  |-  ( sqr 
Fn  CC  ->  ( 0  e.  ( `' sqr " { x } )  <-> 
( 0  e.  CC  /\  ( sqr `  0
)  e.  { x } ) ) )
15955, 106, 158mp2b 10 . . . . . . 7  |-  ( 0  e.  ( `' sqr " { x } )  <-> 
( 0  e.  CC  /\  ( sqr `  0
)  e.  { x } ) )
160157, 159xchnxbir 323 . . . . . 6  |-  ( -.  0  e.  ( `' sqr " { x } )  <->  ( -.  0  e.  CC  \/  -.  ( sqr `  0
)  e.  { x } ) )
161156, 160sylibr 224 . . . . 5  |-  ( x  e.  ( ran  ( sqr  o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) ) 
\  { 0 } )  ->  -.  0  e.  ( `' sqr " {
x } ) )
162 i1fima2 23446 . . . . 5  |-  ( ( ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) )  e.  dom  S.1 
/\  -.  0  e.  ( `' sqr " { x } ) )  -> 
( vol `  ( `' ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) "
( `' sqr " {
x } ) ) )  e.  RR )
163129, 161, 162syl2an 494 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  ( ran  ( sqr 
o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) ) 
\  { 0 } ) )  ->  ( vol `  ( `' ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) " ( `' sqr " { x } ) ) )  e.  RR )
164145, 163syl5eqel 2705 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  dom  S.1 )  /\  x  e.  ( ran  ( sqr 
o.  ( ( F  oF  x.  F
)  oF  +  ( G  oF  x.  G ) ) ) 
\  { 0 } ) )  ->  ( vol `  ( `' ( sqr  o.  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G )
) ) " {
x } ) )  e.  RR )
165104, 136, 144, 164i1fd 23448 . 2  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( sqr  o.  ( ( F  oF  x.  F )  oF  +  ( G  oF  x.  G
) ) )  e. 
dom  S.1 )
16660, 165eqeltrd 2701 1  |-  ( ( F  e.  dom  S.1  /\  G  e.  dom  S.1 )  ->  ( abs  o.  ( F  oF  +  ( ( RR 
X.  { _i }
)  oF  x.  G ) ) )  e.  dom  S.1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    + caddc 9939    x. cmul 9941   +oocpnf 10071    <_ cle 10075   2c2 11070   [,)cico 12177   ^cexp 12860   sqrcsqrt 13973   abscabs 13974   volcvol 23232   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  ftc1anclem7  33491  ftc1anclem8  33492
  Copyright terms: Public domain W3C validator