| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngdir | Structured version Visualization version Unicode version | ||
| Description: Distributive law for the multiplication operation of a nonunital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| rngdi.b |
|
| rngdi.p |
|
| rngdi.t |
|
| Ref | Expression |
|---|---|
| rngdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngdi.b |
. . . 4
| |
| 2 | eqid 2622 |
. . . 4
| |
| 3 | rngdi.p |
. . . 4
| |
| 4 | rngdi.t |
. . . 4
| |
| 5 | 1, 2, 3, 4 | isrng 41876 |
. . 3
|
| 6 | oveq1 6657 |
. . . . . . . 8
| |
| 7 | oveq1 6657 |
. . . . . . . . 9
| |
| 8 | oveq1 6657 |
. . . . . . . . 9
| |
| 9 | 7, 8 | oveq12d 6668 |
. . . . . . . 8
|
| 10 | 6, 9 | eqeq12d 2637 |
. . . . . . 7
|
| 11 | oveq1 6657 |
. . . . . . . . 9
| |
| 12 | 11 | oveq1d 6665 |
. . . . . . . 8
|
| 13 | 8 | oveq1d 6665 |
. . . . . . . 8
|
| 14 | 12, 13 | eqeq12d 2637 |
. . . . . . 7
|
| 15 | 10, 14 | anbi12d 747 |
. . . . . 6
|
| 16 | oveq1 6657 |
. . . . . . . . 9
| |
| 17 | 16 | oveq2d 6666 |
. . . . . . . 8
|
| 18 | oveq2 6658 |
. . . . . . . . 9
| |
| 19 | 18 | oveq1d 6665 |
. . . . . . . 8
|
| 20 | 17, 19 | eqeq12d 2637 |
. . . . . . 7
|
| 21 | oveq2 6658 |
. . . . . . . . 9
| |
| 22 | 21 | oveq1d 6665 |
. . . . . . . 8
|
| 23 | oveq1 6657 |
. . . . . . . . 9
| |
| 24 | 23 | oveq2d 6666 |
. . . . . . . 8
|
| 25 | 22, 24 | eqeq12d 2637 |
. . . . . . 7
|
| 26 | 20, 25 | anbi12d 747 |
. . . . . 6
|
| 27 | oveq2 6658 |
. . . . . . . . 9
| |
| 28 | 27 | oveq2d 6666 |
. . . . . . . 8
|
| 29 | oveq2 6658 |
. . . . . . . . 9
| |
| 30 | 29 | oveq2d 6666 |
. . . . . . . 8
|
| 31 | 28, 30 | eqeq12d 2637 |
. . . . . . 7
|
| 32 | oveq2 6658 |
. . . . . . . 8
| |
| 33 | oveq2 6658 |
. . . . . . . . 9
| |
| 34 | 29, 33 | oveq12d 6668 |
. . . . . . . 8
|
| 35 | 32, 34 | eqeq12d 2637 |
. . . . . . 7
|
| 36 | 31, 35 | anbi12d 747 |
. . . . . 6
|
| 37 | 15, 26, 36 | rspc3v 3325 |
. . . . 5
|
| 38 | simpr 477 |
. . . . 5
| |
| 39 | 37, 38 | syl6com 37 |
. . . 4
|
| 40 | 39 | 3ad2ant3 1084 |
. . 3
|
| 41 | 5, 40 | sylbi 207 |
. 2
|
| 42 | 41 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-rng0 41875 |
| This theorem is referenced by: rnglz 41884 |
| Copyright terms: Public domain | W3C validator |