Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnglz Structured version   Visualization version   Unicode version

Theorem rnglz 41884
Description: The zero of a nonunital ring is a left-absorbing element. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b  |-  B  =  ( Base `  R
)
rngcl.t  |-  .x.  =  ( .r `  R )
rnglz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglz  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )

Proof of Theorem rnglz
StepHypRef Expression
1 rngabl 41877 . . . . . . 7  |-  ( R  e. Rng  ->  R  e.  Abel )
2 ablgrp 18198 . . . . . . 7  |-  ( R  e.  Abel  ->  R  e. 
Grp )
31, 2syl 17 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Grp )
4 rngcl.b . . . . . . . 8  |-  B  =  ( Base `  R
)
5 rnglz.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
64, 5grpidcl 17450 . . . . . . 7  |-  ( R  e.  Grp  ->  .0.  e.  B )
7 eqid 2622 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
84, 7, 5grplid 17452 . . . . . . 7  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
96, 8mpdan 702 . . . . . 6  |-  ( R  e.  Grp  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
103, 9syl 17 . . . . 5  |-  ( R  e. Rng  ->  (  .0.  ( +g  `  R )  .0.  )  =  .0.  )
1110adantr 481 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
1211oveq1d 6665 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  (  .0.  .x.  X )
)
13 simpl 473 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  R  e. Rng )
143, 6syl 17 . . . . . . 7  |-  ( R  e. Rng  ->  .0.  e.  B
)
1514, 14jca 554 . . . . . 6  |-  ( R  e. Rng  ->  (  .0.  e.  B  /\  .0.  e.  B
) )
1615anim1i 592 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  e.  B  /\  .0.  e.  B )  /\  X  e.  B
) )
17 df-3an 1039 . . . . 5  |-  ( (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B )  <->  ( (  .0.  e.  B  /\  .0.  e.  B )  /\  X  e.  B ) )
1816, 17sylibr 224 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B ) )
19 rngcl.t . . . . 5  |-  .x.  =  ( .r `  R )
204, 7, 19rngdir 41882 . . . 4  |-  ( ( R  e. Rng  /\  (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B ) )  -> 
( (  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  ( (  .0. 
.x.  X ) ( +g  `  R ) (  .0.  .x.  X
) ) )
2113, 18, 20syl2anc 693 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  ( (  .0.  .x.  X
) ( +g  `  R
) (  .0.  .x.  X ) ) )
223adantr 481 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  R  e.  Grp )
2314adantr 481 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  .0.  e.  B )
24 simpr 477 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  X  e.  B )
254, 19rngcl 41883 . . . . 5  |-  ( ( R  e. Rng  /\  .0.  e.  B  /\  X  e.  B )  ->  (  .0.  .x.  X )  e.  B )
2613, 23, 24, 25syl3anc 1326 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  e.  B )
274, 7, 5grprid 17453 . . . . 5  |-  ( ( R  e.  Grp  /\  (  .0.  .x.  X )  e.  B )  ->  (
(  .0.  .x.  X
) ( +g  `  R
)  .0.  )  =  (  .0.  .x.  X
) )
2827eqcomd 2628 . . . 4  |-  ( ( R  e.  Grp  /\  (  .0.  .x.  X )  e.  B )  ->  (  .0.  .x.  X )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
2922, 26, 28syl2anc 693 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
3012, 21, 293eqtr3d 2664 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  .x.  X
) ( +g  `  R
) (  .0.  .x.  X ) )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
314, 7grplcan 17477 . . 3  |-  ( ( R  e.  Grp  /\  ( (  .0.  .x.  X )  e.  B  /\  .0.  e.  B  /\  (  .0.  .x.  X )  e.  B ) )  -> 
( ( (  .0. 
.x.  X ) ( +g  `  R ) (  .0.  .x.  X
) )  =  ( (  .0.  .x.  X
) ( +g  `  R
)  .0.  )  <->  (  .0.  .x. 
X )  =  .0.  ) )
3222, 26, 23, 26, 31syl13anc 1328 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
( (  .0.  .x.  X ) ( +g  `  R ) (  .0. 
.x.  X ) )  =  ( (  .0. 
.x.  X ) ( +g  `  R )  .0.  )  <->  (  .0.  .x. 
X )  =  .0.  ) )
3330, 32mpbid 222 1  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422   Abelcabl 18194  Rngcrng 41874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-abl 18196  df-mgp 18490  df-rng0 41875
This theorem is referenced by:  zrrnghm  41917
  Copyright terms: Public domain W3C validator