Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosn3 Structured version   Visualization version   Unicode version

Theorem rngosn3 33723
Description: Obsolete as of 25-Jan-2020. Use ring1zr 19275 or srg1zr 18529 instead. The only unital ring with a base set consisting in one element is the zero ring. (Contributed by FL, 13-Feb-2010.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
on1el3.1  |-  G  =  ( 1st `  R
)
on1el3.2  |-  X  =  ran  G
Assertion
Ref Expression
rngosn3  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  =  { A } 
<->  R  =  <. { <. <. A ,  A >. ,  A >. } ,  { <. <. A ,  A >. ,  A >. } >. ) )

Proof of Theorem rngosn3
StepHypRef Expression
1 on1el3.1 . . . . . . . . . 10  |-  G  =  ( 1st `  R
)
21rngogrpo 33709 . . . . . . . . 9  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 on1el3.2 . . . . . . . . . 10  |-  X  =  ran  G
43grpofo 27353 . . . . . . . . 9  |-  ( G  e.  GrpOp  ->  G :
( X  X.  X
) -onto-> X )
5 fof 6115 . . . . . . . . 9  |-  ( G : ( X  X.  X ) -onto-> X  ->  G : ( X  X.  X ) --> X )
62, 4, 53syl 18 . . . . . . . 8  |-  ( R  e.  RingOps  ->  G : ( X  X.  X ) --> X )
76adantr 481 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  G : ( X  X.  X ) --> X )
8 id 22 . . . . . . . . 9  |-  ( X  =  { A }  ->  X  =  { A } )
98sqxpeqd 5141 . . . . . . . 8  |-  ( X  =  { A }  ->  ( X  X.  X
)  =  ( { A }  X.  { A } ) )
109, 8feq23d 6040 . . . . . . 7  |-  ( X  =  { A }  ->  ( G : ( X  X.  X ) --> X  <->  G : ( { A }  X.  { A } ) --> { A } ) )
117, 10syl5ibcom 235 . . . . . 6  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  =  { A }  ->  G : ( { A }  X.  { A } ) --> { A } ) )
12 fdm 6051 . . . . . . . . . 10  |-  ( G : ( X  X.  X ) --> X  ->  dom  G  =  ( X  X.  X ) )
137, 12syl 17 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  dom  G  =  ( X  X.  X ) )
1413eqcomd 2628 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  X.  X )  =  dom  G )
15 fdm 6051 . . . . . . . . 9  |-  ( G : ( { A }  X.  { A }
) --> { A }  ->  dom  G  =  ( { A }  X.  { A } ) )
1615eqeq2d 2632 . . . . . . . 8  |-  ( G : ( { A }  X.  { A }
) --> { A }  ->  ( ( X  X.  X )  =  dom  G  <-> 
( X  X.  X
)  =  ( { A }  X.  { A } ) ) )
1714, 16syl5ibcom 235 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( G : ( { A }  X.  { A }
) --> { A }  ->  ( X  X.  X
)  =  ( { A }  X.  { A } ) ) )
18 xpid11 5347 . . . . . . 7  |-  ( ( X  X.  X )  =  ( { A }  X.  { A }
)  <->  X  =  { A } )
1917, 18syl6ib 241 . . . . . 6  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( G : ( { A }  X.  { A }
) --> { A }  ->  X  =  { A } ) )
2011, 19impbid 202 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  =  { A } 
<->  G : ( { A }  X.  { A } ) --> { A } ) )
21 simpr 477 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  A  e.  B )
22 xpsng 6406 . . . . . . 7  |-  ( ( A  e.  B  /\  A  e.  B )  ->  ( { A }  X.  { A } )  =  { <. A ,  A >. } )
2321, 22sylancom 701 . . . . . 6  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( { A }  X.  { A } )  =  { <. A ,  A >. } )
2423feq2d 6031 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( G : ( { A }  X.  { A }
) --> { A }  <->  G : { <. A ,  A >. } --> { A } ) )
25 opex 4932 . . . . . 6  |-  <. A ,  A >.  e.  _V
26 fsng 6404 . . . . . 6  |-  ( (
<. A ,  A >.  e. 
_V  /\  A  e.  B )  ->  ( G : { <. A ,  A >. } --> { A } 
<->  G  =  { <. <. A ,  A >. ,  A >. } ) )
2725, 21, 26sylancr 695 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( G : { <. A ,  A >. } --> { A } 
<->  G  =  { <. <. A ,  A >. ,  A >. } ) )
2820, 24, 273bitrd 294 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  =  { A } 
<->  G  =  { <. <. A ,  A >. ,  A >. } ) )
291eqeq1i 2627 . . . 4  |-  ( G  =  { <. <. A ,  A >. ,  A >. }  <-> 
( 1st `  R
)  =  { <. <. A ,  A >. ,  A >. } )
3028, 29syl6bb 276 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  =  { A } 
<->  ( 1st `  R
)  =  { <. <. A ,  A >. ,  A >. } ) )
3130anbi1d 741 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  (
( X  =  { A }  /\  ( 2nd `  R )  =  { <. <. A ,  A >. ,  A >. } )  <-> 
( ( 1st `  R
)  =  { <. <. A ,  A >. ,  A >. }  /\  ( 2nd `  R )  =  { <. <. A ,  A >. ,  A >. } ) ) )
32 eqid 2622 . . . . . . 7  |-  ( 2nd `  R )  =  ( 2nd `  R )
331, 32, 3rngosm 33699 . . . . . 6  |-  ( R  e.  RingOps  ->  ( 2nd `  R
) : ( X  X.  X ) --> X )
3433adantr 481 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( 2nd `  R ) : ( X  X.  X
) --> X )
359, 8feq23d 6040 . . . . 5  |-  ( X  =  { A }  ->  ( ( 2nd `  R
) : ( X  X.  X ) --> X  <-> 
( 2nd `  R
) : ( { A }  X.  { A } ) --> { A } ) )
3634, 35syl5ibcom 235 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  =  { A }  ->  ( 2nd `  R
) : ( { A }  X.  { A } ) --> { A } ) )
3723feq2d 6031 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  (
( 2nd `  R
) : ( { A }  X.  { A } ) --> { A } 
<->  ( 2nd `  R
) : { <. A ,  A >. } --> { A } ) )
38 fsng 6404 . . . . . 6  |-  ( (
<. A ,  A >.  e. 
_V  /\  A  e.  B )  ->  (
( 2nd `  R
) : { <. A ,  A >. } --> { A } 
<->  ( 2nd `  R
)  =  { <. <. A ,  A >. ,  A >. } ) )
3925, 21, 38sylancr 695 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  (
( 2nd `  R
) : { <. A ,  A >. } --> { A } 
<->  ( 2nd `  R
)  =  { <. <. A ,  A >. ,  A >. } ) )
4037, 39bitrd 268 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  (
( 2nd `  R
) : ( { A }  X.  { A } ) --> { A } 
<->  ( 2nd `  R
)  =  { <. <. A ,  A >. ,  A >. } ) )
4136, 40sylibd 229 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  =  { A }  ->  ( 2nd `  R
)  =  { <. <. A ,  A >. ,  A >. } ) )
4241pm4.71d 666 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  =  { A } 
<->  ( X  =  { A }  /\  ( 2nd `  R )  =  { <. <. A ,  A >. ,  A >. } ) ) )
43 relrngo 33695 . . . . . 6  |-  Rel  RingOps
44 df-rel 5121 . . . . . 6  |-  ( Rel  RingOps  <->  RingOps  C_  ( _V  X.  _V ) )
4543, 44mpbi 220 . . . . 5  |-  RingOps  C_  ( _V  X.  _V )
4645sseli 3599 . . . 4  |-  ( R  e.  RingOps  ->  R  e.  ( _V  X.  _V )
)
4746adantr 481 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  R  e.  ( _V  X.  _V ) )
48 eqop 7208 . . 3  |-  ( R  e.  ( _V  X.  _V )  ->  ( R  =  <. { <. <. A ,  A >. ,  A >. } ,  { <. <. A ,  A >. ,  A >. }
>. 
<->  ( ( 1st `  R
)  =  { <. <. A ,  A >. ,  A >. }  /\  ( 2nd `  R )  =  { <. <. A ,  A >. ,  A >. } ) ) )
4947, 48syl 17 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( R  =  <. { <. <. A ,  A >. ,  A >. } ,  { <. <. A ,  A >. ,  A >. } >.  <->  (
( 1st `  R
)  =  { <. <. A ,  A >. ,  A >. }  /\  ( 2nd `  R )  =  { <. <. A ,  A >. ,  A >. } ) ) )
5031, 42, 493bitr4d 300 1  |-  ( ( R  e.  RingOps  /\  A  e.  B )  ->  ( X  =  { A } 
<->  R  =  <. { <. <. A ,  A >. ,  A >. } ,  { <. <. A ,  A >. ,  A >. } >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177   <.cop 4183    X. cxp 5112   dom cdm 5114   ran crn 5115   Rel wrel 5119   -->wf 5884   -onto->wfo 5886   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   GrpOpcgr 27343   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-ablo 27399  df-rngo 33694
This theorem is referenced by:  rngosn4  33724
  Copyright terms: Public domain W3C validator