Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhval Structured version   Visualization version   Unicode version

Theorem rrhval 30040
Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.)
Hypotheses
Ref Expression
rrhval.1  |-  J  =  ( topGen `  ran  (,) )
rrhval.2  |-  K  =  ( TopOpen `  R )
Assertion
Ref Expression
rrhval  |-  ( R  e.  V  ->  (RRHom `  R )  =  ( ( JCnExt K ) `
 (QQHom `  R
) ) )

Proof of Theorem rrhval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( R  e.  V  ->  R  e.  _V )
2 rrhval.1 . . . . . . 7  |-  J  =  ( topGen `  ran  (,) )
32eqcomi 2631 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  J
43a1i 11 . . . . 5  |-  ( r  =  R  ->  ( topGen `
 ran  (,) )  =  J )
5 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  ( TopOpen
`  r )  =  ( TopOpen `  R )
)
6 rrhval.2 . . . . . 6  |-  K  =  ( TopOpen `  R )
75, 6syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  ( TopOpen
`  r )  =  K )
84, 7oveq12d 6668 . . . 4  |-  ( r  =  R  ->  (
( topGen `  ran  (,) )CnExt ( TopOpen `  r )
)  =  ( JCnExt
K ) )
9 fveq2 6191 . . . 4  |-  ( r  =  R  ->  (QQHom `  r )  =  (QQHom `  R ) )
108, 9fveq12d 6197 . . 3  |-  ( r  =  R  ->  (
( ( topGen `  ran  (,) )CnExt ( TopOpen `  r
) ) `  (QQHom `  r ) )  =  ( ( JCnExt K
) `  (QQHom `  R
) ) )
11 df-rrh 30039 . . 3  |- RRHom  =  ( r  e.  _V  |->  ( ( ( topGen `  ran  (,) )CnExt ( TopOpen `  r
) ) `  (QQHom `  r ) ) )
12 fvex 6201 . . 3  |-  ( ( JCnExt K ) `  (QQHom `  R ) )  e.  _V
1310, 11, 12fvmpt 6282 . 2  |-  ( R  e.  _V  ->  (RRHom `  R )  =  ( ( JCnExt K ) `
 (QQHom `  R
) ) )
141, 13syl 17 1  |-  ( R  e.  V  ->  (RRHom `  R )  =  ( ( JCnExt K ) `
 (QQHom `  R
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   ran crn 5115   ` cfv 5888  (class class class)co 6650   (,)cioo 12175   TopOpenctopn 16082   topGenctg 16098  CnExtccnext 21863  QQHomcqqh 30016  RRHomcrrh 30037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-rrh 30039
This theorem is referenced by:  rrhcn  30041  rrhqima  30058  rrhre  30065
  Copyright terms: Public domain W3C validator