| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspn0 | Structured version Visualization version Unicode version | ||
| Description: Specialization for restricted generalization with a nonempty set. (Contributed by Alexander van der Vekens, 6-Sep-2018.) |
| Ref | Expression |
|---|---|
| rspn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 3931 |
. 2
| |
| 2 | nfra1 2941 |
. . . 4
| |
| 3 | nfv 1843 |
. . . 4
| |
| 4 | 2, 3 | nfim 1825 |
. . 3
|
| 5 | rsp 2929 |
. . . 4
| |
| 6 | 5 | com12 32 |
. . 3
|
| 7 | 4, 6 | exlimi 2086 |
. 2
|
| 8 | 1, 7 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: hashge2el2dif 13262 rmodislmodlem 18930 rmodislmod 18931 scmatf1 20337 fusgrregdegfi 26465 rusgr1vtxlem 26483 upgrewlkle2 26502 ralralimp 41295 |
| Copyright terms: Public domain | W3C validator |