MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspn0 Structured version   Visualization version   Unicode version

Theorem rspn0 3934
Description: Specialization for restricted generalization with a nonempty set. (Contributed by Alexander van der Vekens, 6-Sep-2018.)
Assertion
Ref Expression
rspn0  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ph  ->  ph ) )
Distinct variable groups:    x, A    ph, x

Proof of Theorem rspn0
StepHypRef Expression
1 n0 3931 . 2  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
2 nfra1 2941 . . . 4  |-  F/ x A. x  e.  A  ph
3 nfv 1843 . . . 4  |-  F/ x ph
42, 3nfim 1825 . . 3  |-  F/ x
( A. x  e.  A  ph  ->  ph )
5 rsp 2929 . . . 4  |-  ( A. x  e.  A  ph  ->  ( x  e.  A  ->  ph ) )
65com12 32 . . 3  |-  ( x  e.  A  ->  ( A. x  e.  A  ph 
->  ph ) )
74, 6exlimi 2086 . 2  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ph  ->  ph )
)
81, 7sylbi 207 1  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ph  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  hashge2el2dif  13262  rmodislmodlem  18930  rmodislmod  18931  scmatf1  20337  fusgrregdegfi  26465  rusgr1vtxlem  26483  upgrewlkle2  26502  ralralimp  41295
  Copyright terms: Public domain W3C validator