MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq2 Structured version   Visualization version   Unicode version

Theorem seqeq2 12805
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq2  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )

Proof of Theorem seqeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 6656 . . . . . 6  |-  (  .+  =  Q  ->  ( y 
.+  ( F `  ( x  +  1
) ) )  =  ( y Q ( F `  ( x  +  1 ) ) ) )
21opeq2d 4409 . . . . 5  |-  (  .+  =  Q  ->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )
32mpt2eq3dv 6721 . . . 4  |-  (  .+  =  Q  ->  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) )
4 rdgeq1 7507 . . . 4  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
)  =  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )  ->  rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  =  rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M )
>. ) )
53, 4syl 17 . . 3  |-  (  .+  =  Q  ->  rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y Q ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) )
65imaeq1d 5465 . 2  |-  (  .+  =  Q  ->  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y Q ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om ) )
7 df-seq 12802 . 2  |-  seq M
(  .+  ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
8 df-seq 12802 . 2  |-  seq M
( Q ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y Q ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
96, 7, 83eqtr4g 2681 1  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   _Vcvv 3200   <.cop 4183   "cima 5117   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   reccrdg 7505   1c1 9937    + caddc 9939    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802
This theorem is referenced by:  seqeq2d  12808  sadcom  15185  ressmulgnn  29683  cvmliftlem15  31280
  Copyright terms: Public domain W3C validator