Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelmap Structured version   Visualization version   Unicode version

Theorem snelmap 39254
Description: Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
snelmap.a  |-  ( ph  ->  A  e.  V )
snelmap.b  |-  ( ph  ->  B  e.  W )
snelmap.n  |-  ( ph  ->  A  =/=  (/) )
snelmap.e  |-  ( ph  ->  ( A  X.  {
x } )  e.  ( B  ^m  A
) )
Assertion
Ref Expression
snelmap  |-  ( ph  ->  x  e.  B )

Proof of Theorem snelmap
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 snelmap.n . . 3  |-  ( ph  ->  A  =/=  (/) )
2 n0 3931 . . 3  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
31, 2sylib 208 . 2  |-  ( ph  ->  E. y  y  e.  A )
4 vex 3203 . . . . . . . 8  |-  x  e. 
_V
54fvconst2 6469 . . . . . . 7  |-  ( y  e.  A  ->  (
( A  X.  {
x } ) `  y )  =  x )
65eqcomd 2628 . . . . . 6  |-  ( y  e.  A  ->  x  =  ( ( A  X.  { x }
) `  y )
)
76adantl 482 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  x  =  ( ( A  X.  { x }
) `  y )
)
8 snelmap.e . . . . . . . 8  |-  ( ph  ->  ( A  X.  {
x } )  e.  ( B  ^m  A
) )
9 snelmap.b . . . . . . . . 9  |-  ( ph  ->  B  e.  W )
10 snelmap.a . . . . . . . . 9  |-  ( ph  ->  A  e.  V )
11 elmapg 7870 . . . . . . . . 9  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( ( A  X.  { x } )  e.  ( B  ^m  A )  <->  ( A  X.  { x } ) : A --> B ) )
129, 10, 11syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { x } )  e.  ( B  ^m  A )  <->  ( A  X.  { x } ) : A --> B ) )
138, 12mpbid 222 . . . . . . 7  |-  ( ph  ->  ( A  X.  {
x } ) : A --> B )
1413adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  ( A  X.  { x }
) : A --> B )
15 simpr 477 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  A )
1614, 15ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  (
( A  X.  {
x } ) `  y )  e.  B
)
177, 16eqeltrd 2701 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  x  e.  B )
1817ex 450 . . 3  |-  ( ph  ->  ( y  e.  A  ->  x  e.  B ) )
1918exlimdv 1861 . 2  |-  ( ph  ->  ( E. y  y  e.  A  ->  x  e.  B ) )
203, 19mpd 15 1  |-  ( ph  ->  x  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   (/)c0 3915   {csn 4177    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859
This theorem is referenced by:  mapssbi  39405
  Copyright terms: Public domain W3C validator