| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frsn | Structured version Visualization version Unicode version | ||
| Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| frsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 4253 |
. . . . . 6
| |
| 2 | fr0 5093 |
. . . . . . 7
| |
| 3 | freq2 5085 |
. . . . . . 7
| |
| 4 | 2, 3 | mpbiri 248 |
. . . . . 6
|
| 5 | 1, 4 | sylbi 207 |
. . . . 5
|
| 6 | 5 | adantl 482 |
. . . 4
|
| 7 | brrelex 5156 |
. . . . 5
| |
| 8 | 7 | stoic1a 1697 |
. . . 4
|
| 9 | 6, 8 | 2thd 255 |
. . 3
|
| 10 | 9 | ex 450 |
. 2
|
| 11 | df-fr 5073 |
. . . 4
| |
| 12 | sssn 4358 |
. . . . . . . . . . 11
| |
| 13 | neor 2885 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | sylbb 209 |
. . . . . . . . . 10
|
| 15 | 14 | imp 445 |
. . . . . . . . 9
|
| 16 | 15 | adantl 482 |
. . . . . . . 8
|
| 17 | eqimss 3657 |
. . . . . . . . . 10
| |
| 18 | 17 | adantl 482 |
. . . . . . . . 9
|
| 19 | snnzg 4308 |
. . . . . . . . . . 11
| |
| 20 | neeq1 2856 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | syl5ibrcom 237 |
. . . . . . . . . 10
|
| 22 | 21 | imp 445 |
. . . . . . . . 9
|
| 23 | 18, 22 | jca 554 |
. . . . . . . 8
|
| 24 | 16, 23 | impbida 877 |
. . . . . . 7
|
| 25 | 24 | imbi1d 331 |
. . . . . 6
|
| 26 | 25 | albidv 1849 |
. . . . 5
|
| 27 | snex 4908 |
. . . . . 6
| |
| 28 | raleq 3138 |
. . . . . . 7
| |
| 29 | 28 | rexeqbi1dv 3147 |
. . . . . 6
|
| 30 | 27, 29 | ceqsalv 3233 |
. . . . 5
|
| 31 | 26, 30 | syl6bb 276 |
. . . 4
|
| 32 | 11, 31 | syl5bb 272 |
. . 3
|
| 33 | breq2 4657 |
. . . . . 6
| |
| 34 | 33 | notbid 308 |
. . . . 5
|
| 35 | 34 | ralbidv 2986 |
. . . 4
|
| 36 | 35 | rexsng 4219 |
. . 3
|
| 37 | breq1 4656 |
. . . . 5
| |
| 38 | 37 | notbid 308 |
. . . 4
|
| 39 | 38 | ralsng 4218 |
. . 3
|
| 40 | 32, 36, 39 | 3bitrd 294 |
. 2
|
| 41 | 10, 40 | pm2.61d2 172 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-fr 5073 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: wesn 5190 |
| Copyright terms: Public domain | W3C validator |