MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsn Structured version   Visualization version   Unicode version

Theorem frsn 5189
Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
frsn  |-  ( Rel 
R  ->  ( R  Fr  { A }  <->  -.  A R A ) )

Proof of Theorem frsn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snprc 4253 . . . . . 6  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
2 fr0 5093 . . . . . . 7  |-  R  Fr  (/)
3 freq2 5085 . . . . . . 7  |-  ( { A }  =  (/)  ->  ( R  Fr  { A }  <->  R  Fr  (/) ) )
42, 3mpbiri 248 . . . . . 6  |-  ( { A }  =  (/)  ->  R  Fr  { A } )
51, 4sylbi 207 . . . . 5  |-  ( -.  A  e.  _V  ->  R  Fr  { A }
)
65adantl 482 . . . 4  |-  ( ( Rel  R  /\  -.  A  e.  _V )  ->  R  Fr  { A } )
7 brrelex 5156 . . . . 5  |-  ( ( Rel  R  /\  A R A )  ->  A  e.  _V )
87stoic1a 1697 . . . 4  |-  ( ( Rel  R  /\  -.  A  e.  _V )  ->  -.  A R A )
96, 82thd 255 . . 3  |-  ( ( Rel  R  /\  -.  A  e.  _V )  ->  ( R  Fr  { A }  <->  -.  A R A ) )
109ex 450 . 2  |-  ( Rel 
R  ->  ( -.  A  e.  _V  ->  ( R  Fr  { A } 
<->  -.  A R A ) ) )
11 df-fr 5073 . . . 4  |-  ( R  Fr  { A }  <->  A. x ( ( x 
C_  { A }  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
12 sssn 4358 . . . . . . . . . . 11  |-  ( x 
C_  { A }  <->  ( x  =  (/)  \/  x  =  { A } ) )
13 neor 2885 . . . . . . . . . . 11  |-  ( ( x  =  (/)  \/  x  =  { A } )  <-> 
( x  =/=  (/)  ->  x  =  { A } ) )
1412, 13sylbb 209 . . . . . . . . . 10  |-  ( x 
C_  { A }  ->  ( x  =/=  (/)  ->  x  =  { A } ) )
1514imp 445 . . . . . . . . 9  |-  ( ( x  C_  { A }  /\  x  =/=  (/) )  ->  x  =  { A } )
1615adantl 482 . . . . . . . 8  |-  ( ( A  e.  _V  /\  ( x  C_  { A }  /\  x  =/=  (/) ) )  ->  x  =  { A } )
17 eqimss 3657 . . . . . . . . . 10  |-  ( x  =  { A }  ->  x  C_  { A } )
1817adantl 482 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  x  =  { A } )  ->  x  C_ 
{ A } )
19 snnzg 4308 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  { A }  =/=  (/) )
20 neeq1 2856 . . . . . . . . . . 11  |-  ( x  =  { A }  ->  ( x  =/=  (/)  <->  { A }  =/=  (/) ) )
2119, 20syl5ibrcom 237 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
x  =  { A }  ->  x  =/=  (/) ) )
2221imp 445 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  x  =  { A } )  ->  x  =/=  (/) )
2318, 22jca 554 . . . . . . . 8  |-  ( ( A  e.  _V  /\  x  =  { A } )  ->  (
x  C_  { A }  /\  x  =/=  (/) ) )
2416, 23impbida 877 . . . . . . 7  |-  ( A  e.  _V  ->  (
( x  C_  { A }  /\  x  =/=  (/) )  <->  x  =  { A } ) )
2524imbi1d 331 . . . . . 6  |-  ( A  e.  _V  ->  (
( ( x  C_  { A }  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  <->  ( x  =  { A }  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) ) )
2625albidv 1849 . . . . 5  |-  ( A  e.  _V  ->  ( A. x ( ( x 
C_  { A }  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  <->  A. x ( x  =  { A }  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) ) )
27 snex 4908 . . . . . 6  |-  { A }  e.  _V
28 raleq 3138 . . . . . . 7  |-  ( x  =  { A }  ->  ( A. z  e.  x  -.  z R y  <->  A. z  e.  { A }  -.  z R y ) )
2928rexeqbi1dv 3147 . . . . . 6  |-  ( x  =  { A }  ->  ( E. y  e.  x  A. z  e.  x  -.  z R y  <->  E. y  e.  { A } A. z  e. 
{ A }  -.  z R y ) )
3027, 29ceqsalv 3233 . . . . 5  |-  ( A. x ( x  =  { A }  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  <->  E. y  e.  { A } A. z  e.  { A }  -.  z R y )
3126, 30syl6bb 276 . . . 4  |-  ( A  e.  _V  ->  ( A. x ( ( x 
C_  { A }  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  <->  E. y  e.  { A } A. z  e.  { A }  -.  z R y ) )
3211, 31syl5bb 272 . . 3  |-  ( A  e.  _V  ->  ( R  Fr  { A } 
<->  E. y  e.  { A } A. z  e. 
{ A }  -.  z R y ) )
33 breq2 4657 . . . . . 6  |-  ( y  =  A  ->  (
z R y  <->  z R A ) )
3433notbid 308 . . . . 5  |-  ( y  =  A  ->  ( -.  z R y  <->  -.  z R A ) )
3534ralbidv 2986 . . . 4  |-  ( y  =  A  ->  ( A. z  e.  { A }  -.  z R y  <->  A. z  e.  { A }  -.  z R A ) )
3635rexsng 4219 . . 3  |-  ( A  e.  _V  ->  ( E. y  e.  { A } A. z  e.  { A }  -.  z R y  <->  A. z  e.  { A }  -.  z R A ) )
37 breq1 4656 . . . . 5  |-  ( z  =  A  ->  (
z R A  <->  A R A ) )
3837notbid 308 . . . 4  |-  ( z  =  A  ->  ( -.  z R A  <->  -.  A R A ) )
3938ralsng 4218 . . 3  |-  ( A  e.  _V  ->  ( A. z  e.  { A }  -.  z R A  <->  -.  A R A ) )
4032, 36, 393bitrd 294 . 2  |-  ( A  e.  _V  ->  ( R  Fr  { A } 
<->  -.  A R A ) )
4110, 40pm2.61d2 172 1  |-  ( Rel 
R  ->  ( R  Fr  { A }  <->  -.  A R A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    Fr wfr 5070   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-fr 5073  df-xp 5120  df-rel 5121
This theorem is referenced by:  wesn  5190
  Copyright terms: Public domain W3C validator