MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2wlk Structured version   Visualization version   Unicode version

Theorem umgr2wlk 26845
Description: In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
Hypothesis
Ref Expression
umgr2wlk.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
umgr2wlk  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. f E. p
( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )
Distinct variable groups:    A, f, p    B, f, p    C, f, p    f, G, p
Allowed substitution hints:    E( f, p)

Proof of Theorem umgr2wlk
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgruhgr 25999 . . . . . 6  |-  ( G  e. UMGraph  ->  G  e. UHGraph  )
2 umgr2wlk.e . . . . . . . 8  |-  E  =  (Edg `  G )
32eleq2i 2693 . . . . . . 7  |-  ( { B ,  C }  e.  E  <->  { B ,  C }  e.  (Edg `  G
) )
4 eqid 2622 . . . . . . . 8  |-  (iEdg `  G )  =  (iEdg `  G )
54uhgredgiedgb 26021 . . . . . . 7  |-  ( G  e. UHGraph  ->  ( { B ,  C }  e.  (Edg
`  G )  <->  E. i  e.  dom  (iEdg `  G
) { B ,  C }  =  (
(iEdg `  G ) `  i ) ) )
63, 5syl5bb 272 . . . . . 6  |-  ( G  e. UHGraph  ->  ( { B ,  C }  e.  E  <->  E. i  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  i ) ) )
71, 6syl 17 . . . . 5  |-  ( G  e. UMGraph  ->  ( { B ,  C }  e.  E  <->  E. i  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  i ) ) )
87biimpd 219 . . . 4  |-  ( G  e. UMGraph  ->  ( { B ,  C }  e.  E  ->  E. i  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  i
) ) )
98a1d 25 . . 3  |-  ( G  e. UMGraph  ->  ( { A ,  B }  e.  E  ->  ( { B ,  C }  e.  E  ->  E. i  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  i
) ) ) )
1093imp 1256 . 2  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. i  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  i
) )
112eleq2i 2693 . . . . . . 7  |-  ( { A ,  B }  e.  E  <->  { A ,  B }  e.  (Edg `  G
) )
124uhgredgiedgb 26021 . . . . . . 7  |-  ( G  e. UHGraph  ->  ( { A ,  B }  e.  (Edg
`  G )  <->  E. j  e.  dom  (iEdg `  G
) { A ,  B }  =  (
(iEdg `  G ) `  j ) ) )
1311, 12syl5bb 272 . . . . . 6  |-  ( G  e. UHGraph  ->  ( { A ,  B }  e.  E  <->  E. j  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  j ) ) )
141, 13syl 17 . . . . 5  |-  ( G  e. UMGraph  ->  ( { A ,  B }  e.  E  <->  E. j  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  j ) ) )
1514biimpd 219 . . . 4  |-  ( G  e. UMGraph  ->  ( { A ,  B }  e.  E  ->  E. j  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  j
) ) )
1615a1dd 50 . . 3  |-  ( G  e. UMGraph  ->  ( { A ,  B }  e.  E  ->  ( { B ,  C }  e.  E  ->  E. j  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  j
) ) ) )
17163imp 1256 . 2  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. j  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  j
) )
18 s2cli 13625 . . . . . . . . . 10  |-  <" j
i ">  e. Word  _V
19 s3cli 13626 . . . . . . . . . 10  |-  <" A B C ">  e. Word  _V
2018, 19pm3.2i 471 . . . . . . . . 9  |-  ( <" j i ">  e. Word  _V  /\  <" A B C ">  e. Word  _V )
21 eqid 2622 . . . . . . . . . 10  |-  <" j
i ">  =  <" j i ">
22 eqid 2622 . . . . . . . . . 10  |-  <" A B C ">  =  <" A B C ">
23 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) ) )  ->  G  e. UMGraph  )
24 3simpc 1060 . . . . . . . . . . 11  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )
)
2524adantr 481 . . . . . . . . . 10  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) ) )  ->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )
)
26 simpl 473 . . . . . . . . . . . 12  |-  ( ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) )  ->  { A ,  B }  =  ( (iEdg `  G ) `  j
) )
2726eqcomd 2628 . . . . . . . . . . 11  |-  ( ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) )  -> 
( (iEdg `  G
) `  j )  =  { A ,  B } )
2827adantl 482 . . . . . . . . . 10  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) ) )  ->  ( (iEdg `  G ) `  j
)  =  { A ,  B } )
29 simpr 477 . . . . . . . . . . . 12  |-  ( ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) )  ->  { B ,  C }  =  ( (iEdg `  G ) `  i
) )
3029eqcomd 2628 . . . . . . . . . . 11  |-  ( ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) )  -> 
( (iEdg `  G
) `  i )  =  { B ,  C } )
3130adantl 482 . . . . . . . . . 10  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) ) )  ->  ( (iEdg `  G ) `  i
)  =  { B ,  C } )
322, 4, 21, 22, 23, 25, 28, 31umgr2adedgwlk 26841 . . . . . . . . 9  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) ) )  ->  ( <" j
i "> (Walks `  G ) <" A B C ">  /\  ( # `
 <" j i "> )  =  2  /\  ( A  =  ( <" A B C "> `  0
)  /\  B  =  ( <" A B C "> `  1
)  /\  C  =  ( <" A B C "> `  2
) ) ) )
33 breq12 4658 . . . . . . . . . . 11  |-  ( ( f  =  <" j
i ">  /\  p  =  <" A B C "> )  ->  ( f (Walks `  G ) p  <->  <" j
i "> (Walks `  G ) <" A B C "> )
)
34 fveq2 6191 . . . . . . . . . . . . 13  |-  ( f  =  <" j i ">  ->  ( # `
 f )  =  ( # `  <" j i "> ) )
3534eqeq1d 2624 . . . . . . . . . . . 12  |-  ( f  =  <" j i ">  ->  (
( # `  f )  =  2  <->  ( # `  <" j i "> )  =  2 ) )
3635adantr 481 . . . . . . . . . . 11  |-  ( ( f  =  <" j
i ">  /\  p  =  <" A B C "> )  ->  ( ( # `  f
)  =  2  <->  ( # `
 <" j i "> )  =  2 ) )
37 fveq1 6190 . . . . . . . . . . . . . 14  |-  ( p  =  <" A B C ">  ->  ( p `  0 )  =  ( <" A B C "> `  0
) )
3837eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( p  =  <" A B C ">  ->  ( A  =  ( p `
 0 )  <->  A  =  ( <" A B C "> `  0
) ) )
39 fveq1 6190 . . . . . . . . . . . . . 14  |-  ( p  =  <" A B C ">  ->  ( p `  1 )  =  ( <" A B C "> `  1
) )
4039eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( p  =  <" A B C ">  ->  ( B  =  ( p `
 1 )  <->  B  =  ( <" A B C "> `  1
) ) )
41 fveq1 6190 . . . . . . . . . . . . . 14  |-  ( p  =  <" A B C ">  ->  ( p `  2 )  =  ( <" A B C "> `  2
) )
4241eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( p  =  <" A B C ">  ->  ( C  =  ( p `
 2 )  <->  C  =  ( <" A B C "> `  2
) ) )
4338, 40, 423anbi123d 1399 . . . . . . . . . . . 12  |-  ( p  =  <" A B C ">  ->  ( ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  <->  ( A  =  ( <" A B C "> `  0
)  /\  B  =  ( <" A B C "> `  1
)  /\  C  =  ( <" A B C "> `  2
) ) ) )
4443adantl 482 . . . . . . . . . . 11  |-  ( ( f  =  <" j
i ">  /\  p  =  <" A B C "> )  ->  ( ( A  =  ( p `  0
)  /\  B  =  ( p `  1
)  /\  C  =  ( p `  2
) )  <->  ( A  =  ( <" A B C "> `  0
)  /\  B  =  ( <" A B C "> `  1
)  /\  C  =  ( <" A B C "> `  2
) ) ) )
4533, 36, 443anbi123d 1399 . . . . . . . . . 10  |-  ( ( f  =  <" j
i ">  /\  p  =  <" A B C "> )  ->  ( ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  <->  ( <" j
i "> (Walks `  G ) <" A B C ">  /\  ( # `
 <" j i "> )  =  2  /\  ( A  =  ( <" A B C "> `  0
)  /\  B  =  ( <" A B C "> `  1
)  /\  C  =  ( <" A B C "> `  2
) ) ) ) )
4645spc2egv 3295 . . . . . . . . 9  |-  ( (
<" j i ">  e. Word  _V  /\  <" A B C ">  e. Word  _V )  ->  (
( <" j i "> (Walks `  G ) <" A B C ">  /\  ( # `
 <" j i "> )  =  2  /\  ( A  =  ( <" A B C "> `  0
)  /\  B  =  ( <" A B C "> `  1
)  /\  C  =  ( <" A B C "> `  2
) ) )  ->  E. f E. p ( f (Walks `  G
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  B  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) )
4720, 32, 46mpsyl 68 . . . . . . . 8  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  /\  { B ,  C }  =  ( (iEdg `  G ) `  i ) ) )  ->  E. f E. p
( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )
4847exp32 631 . . . . . . 7  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( { A ,  B }  =  (
(iEdg `  G ) `  j )  ->  ( { B ,  C }  =  ( (iEdg `  G ) `  i
)  ->  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
4948com12 32 . . . . . 6  |-  ( { A ,  B }  =  ( (iEdg `  G ) `  j
)  ->  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( { B ,  C }  =  (
(iEdg `  G ) `  i )  ->  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
5049rexlimivw 3029 . . . . 5  |-  ( E. j  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  j )  ->  (
( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  ->  ( { B ,  C }  =  ( (iEdg `  G ) `  i
)  ->  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
5150com13 88 . . . 4  |-  ( { B ,  C }  =  ( (iEdg `  G ) `  i
)  ->  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( E. j  e. 
dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  j
)  ->  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
5251rexlimivw 3029 . . 3  |-  ( E. i  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  i )  ->  (
( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  ->  ( E. j  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  j )  ->  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
5352com12 32 . 2  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( E. i  e. 
dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  i
)  ->  ( E. j  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  j )  ->  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
5410, 17, 53mp2d 49 1  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. f E. p
( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   {cpr 4179   class class class wbr 4653   dom cdm 5114   ` cfv 5888   0cc0 9936   1c1 9937   2c2 11070   #chash 13117  Word cword 13291   <"cs2 13586   <"cs3 13587  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   UMGraph cumgr 25976  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-wlks 26495
This theorem is referenced by:  umgr2wlkon  26846  umgrwwlks2on  26850
  Copyright terms: Public domain W3C validator