MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pthon2v Structured version   Visualization version   Unicode version

Theorem 1pthon2v 27013
Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1pthon2v.v  |-  V  =  (Vtx `  G )
1pthon2v.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
1pthon2v  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e )  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p )
Distinct variable groups:    A, e,
f, p    B, e,
f, p    e, G, f, p    e, V
Allowed substitution hints:    E( e, f, p)    V( f, p)

Proof of Theorem 1pthon2v
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  V )  ->  A  e.  V )
21anim2i 593 . . . . . . 7  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )
)  ->  ( G  e. UHGraph  /\  A  e.  V
) )
323adant3 1081 . . . . . 6  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e )  ->  ( G  e. UHGraph  /\  A  e.  V ) )
43adantl 482 . . . . 5  |-  ( ( A  =  B  /\  ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e ) )  -> 
( G  e. UHGraph  /\  A  e.  V ) )
5 1pthon2v.v . . . . . . 7  |-  V  =  (Vtx `  G )
650pthonv 26990 . . . . . 6  |-  ( A  e.  V  ->  E. f E. p  f ( A (PathsOn `  G ) A ) p )
76adantl 482 . . . . 5  |-  ( ( G  e. UHGraph  /\  A  e.  V )  ->  E. f E. p  f ( A (PathsOn `  G ) A ) p )
84, 7syl 17 . . . 4  |-  ( ( A  =  B  /\  ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e ) )  ->  E. f E. p  f ( A (PathsOn `  G
) A ) p )
9 oveq2 6658 . . . . . . . 8  |-  ( B  =  A  ->  ( A (PathsOn `  G ) B )  =  ( A (PathsOn `  G
) A ) )
109eqcoms 2630 . . . . . . 7  |-  ( A  =  B  ->  ( A (PathsOn `  G ) B )  =  ( A (PathsOn `  G
) A ) )
1110breqd 4664 . . . . . 6  |-  ( A  =  B  ->  (
f ( A (PathsOn `  G ) B ) p  <->  f ( A (PathsOn `  G ) A ) p ) )
12112exbidv 1852 . . . . 5  |-  ( A  =  B  ->  ( E. f E. p  f ( A (PathsOn `  G
) B ) p  <->  E. f E. p  f ( A (PathsOn `  G
) A ) p ) )
1312adantr 481 . . . 4  |-  ( ( A  =  B  /\  ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e ) )  -> 
( E. f E. p  f ( A (PathsOn `  G ) B ) p  <->  E. f E. p  f ( A (PathsOn `  G ) A ) p ) )
148, 13mpbird 247 . . 3  |-  ( ( A  =  B  /\  ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e ) )  ->  E. f E. p  f ( A (PathsOn `  G
) B ) p )
1514ex 450 . 2  |-  ( A  =  B  ->  (
( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e )  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p ) )
16 1pthon2v.e . . . . . . . . . . 11  |-  E  =  (Edg `  G )
1716eleq2i 2693 . . . . . . . . . 10  |-  ( e  e.  E  <->  e  e.  (Edg `  G ) )
18 eqid 2622 . . . . . . . . . . 11  |-  (iEdg `  G )  =  (iEdg `  G )
1918uhgredgiedgb 26021 . . . . . . . . . 10  |-  ( G  e. UHGraph  ->  ( e  e.  (Edg `  G )  <->  E. i  e.  dom  (iEdg `  G ) e  =  ( (iEdg `  G
) `  i )
) )
2017, 19syl5bb 272 . . . . . . . . 9  |-  ( G  e. UHGraph  ->  ( e  e.  E  <->  E. i  e.  dom  (iEdg `  G ) e  =  ( (iEdg `  G ) `  i
) ) )
21203ad2ant1 1082 . . . . . . . 8  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  ->  ( e  e.  E  <->  E. i  e.  dom  (iEdg `  G ) e  =  ( (iEdg `  G ) `  i
) ) )
22 s1cli 13384 . . . . . . . . . . . 12  |-  <" i ">  e. Word  _V
23 s2cli 13625 . . . . . . . . . . . 12  |-  <" A B ">  e. Word  _V
2422, 23pm3.2i 471 . . . . . . . . . . 11  |-  ( <" i ">  e. Word  _V  /\  <" A B ">  e. Word  _V )
25 eqid 2622 . . . . . . . . . . . 12  |-  <" A B ">  =  <" A B ">
26 eqid 2622 . . . . . . . . . . . 12  |-  <" i ">  =  <" i ">
27 simpl2l 1114 . . . . . . . . . . . 12  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  /\  ( (
i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  /\  { A ,  B }  C_  e ) )  ->  A  e.  V )
28 simpl2r 1115 . . . . . . . . . . . 12  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  /\  ( (
i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  /\  { A ,  B }  C_  e ) )  ->  B  e.  V )
29 eqneqall 2805 . . . . . . . . . . . . . . . 16  |-  ( A  =  B  ->  ( A  =/=  B  ->  (
(iEdg `  G ) `  i )  =  { A } ) )
3029com12 32 . . . . . . . . . . . . . . 15  |-  ( A  =/=  B  ->  ( A  =  B  ->  ( (iEdg `  G ) `  i )  =  { A } ) )
31303ad2ant3 1084 . . . . . . . . . . . . . 14  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  ->  ( A  =  B  ->  ( (iEdg `  G ) `  i
)  =  { A } ) )
3231adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  /\  ( (
i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  /\  { A ,  B }  C_  e ) )  -> 
( A  =  B  ->  ( (iEdg `  G ) `  i
)  =  { A } ) )
3332imp 445 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V
)  /\  A  =/=  B )  /\  ( ( i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  /\  { A ,  B }  C_  e ) )  /\  A  =  B )  ->  ( (iEdg `  G
) `  i )  =  { A } )
34 sseq2 3627 . . . . . . . . . . . . . . . 16  |-  ( e  =  ( (iEdg `  G ) `  i
)  ->  ( { A ,  B }  C_  e  <->  { A ,  B }  C_  ( (iEdg `  G ) `  i
) ) )
3534adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  ->  ( { A ,  B }  C_  e  <->  { A ,  B }  C_  ( (iEdg `  G ) `  i
) ) )
3635biimpa 501 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  /\  { A ,  B }  C_  e )  ->  { A ,  B }  C_  (
(iEdg `  G ) `  i ) )
3736adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  /\  ( (
i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  /\  { A ,  B }  C_  e ) )  ->  { A ,  B }  C_  ( (iEdg `  G
) `  i )
)
3837adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V
)  /\  A  =/=  B )  /\  ( ( i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  /\  { A ,  B }  C_  e ) )  /\  A  =/=  B )  ->  { A ,  B }  C_  ( (iEdg `  G
) `  i )
)
3925, 26, 27, 28, 33, 38, 5, 181pthond 27004 . . . . . . . . . . 11  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  /\  ( (
i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  /\  { A ,  B }  C_  e ) )  ->  <" i "> ( A (PathsOn `  G
) B ) <" A B "> )
40 breq12 4658 . . . . . . . . . . . 12  |-  ( ( f  =  <" i ">  /\  p  =  <" A B "> )  ->  ( f ( A (PathsOn `  G
) B ) p  <->  <" i "> ( A (PathsOn `  G
) B ) <" A B "> ) )
4140spc2egv 3295 . . . . . . . . . . 11  |-  ( (
<" i ">  e. Word  _V  /\  <" A B ">  e. Word  _V )  ->  ( <" i "> ( A (PathsOn `  G ) B )
<" A B ">  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p ) )
4224, 39, 41mpsyl 68 . . . . . . . . . 10  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  /\  ( (
i  e.  dom  (iEdg `  G )  /\  e  =  ( (iEdg `  G ) `  i
) )  /\  { A ,  B }  C_  e ) )  ->  E. f E. p  f ( A (PathsOn `  G
) B ) p )
4342exp44 641 . . . . . . . . 9  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  ->  ( i  e.  dom  (iEdg `  G
)  ->  ( e  =  ( (iEdg `  G ) `  i
)  ->  ( { A ,  B }  C_  e  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p ) ) ) )
4443rexlimdv 3030 . . . . . . . 8  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  ->  ( E. i  e.  dom  (iEdg `  G ) e  =  ( (iEdg `  G
) `  i )  ->  ( { A ,  B }  C_  e  ->  E. f E. p  f ( A (PathsOn `  G
) B ) p ) ) )
4521, 44sylbid 230 . . . . . . 7  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  ->  ( e  e.  E  ->  ( { A ,  B }  C_  e  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p ) ) )
4645rexlimdv 3030 . . . . . 6  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B
)  ->  ( E. e  e.  E  { A ,  B }  C_  e  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p ) )
47463exp 1264 . . . . 5  |-  ( G  e. UHGraph  ->  ( ( A  e.  V  /\  B  e.  V )  ->  ( A  =/=  B  ->  ( E. e  e.  E  { A ,  B }  C_  e  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p ) ) ) )
4847com34 91 . . . 4  |-  ( G  e. UHGraph  ->  ( ( A  e.  V  /\  B  e.  V )  ->  ( E. e  e.  E  { A ,  B }  C_  e  ->  ( A  =/=  B  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p ) ) ) )
49483imp 1256 . . 3  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e )  ->  ( A  =/=  B  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p ) )
5049com12 32 . 2  |-  ( A  =/=  B  ->  (
( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e )  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p ) )
5115, 50pm2.61ine 2877 1  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  E. e  e.  E  { A ,  B }  C_  e )  ->  E. f E. p  f ( A (PathsOn `  G ) B ) p )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650  Word cword 13291   <"cs1 13294   <"cs2 13586  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951  PathsOncpthson 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-edg 25940  df-uhgr 25953  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-pthson 26614
This theorem is referenced by:  1pthon2ve  27014  cusconngr  27051
  Copyright terms: Public domain W3C validator