MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthon3v Structured version   Visualization version   Unicode version

Theorem 2pthon3v 26839
Description: For a vertex adjacent to two other vertices there is a simple path of length 2 between these other vertices in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.)
Hypotheses
Ref Expression
2pthon3v.v  |-  V  =  (Vtx `  G )
2pthon3v.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
2pthon3v  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) )  ->  E. f E. p ( f ( A (SPathsOn `  G
) C ) p  /\  ( # `  f
)  =  2 ) )
Distinct variable groups:    A, f, p    B, f, p    C, f, p    f, G, p
Allowed substitution hints:    E( f, p)    V( f, p)

Proof of Theorem 2pthon3v
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2pthon3v.e . . . . . . . . . 10  |-  E  =  (Edg `  G )
2 edgval 25941 . . . . . . . . . 10  |-  (Edg `  G )  =  ran  (iEdg `  G )
31, 2eqtri 2644 . . . . . . . . 9  |-  E  =  ran  (iEdg `  G
)
43eleq2i 2693 . . . . . . . 8  |-  ( { A ,  B }  e.  E  <->  { A ,  B }  e.  ran  (iEdg `  G ) )
5 2pthon3v.v . . . . . . . . . . 11  |-  V  =  (Vtx `  G )
6 eqid 2622 . . . . . . . . . . 11  |-  (iEdg `  G )  =  (iEdg `  G )
75, 6uhgrf 25957 . . . . . . . . . 10  |-  ( G  e. UHGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> ( ~P V  \  { (/) } ) )
87ffnd 6046 . . . . . . . . 9  |-  ( G  e. UHGraph  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
9 fvelrnb 6243 . . . . . . . . 9  |-  ( (iEdg `  G )  Fn  dom  (iEdg `  G )  -> 
( { A ,  B }  e.  ran  (iEdg `  G )  <->  E. i  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  i
)  =  { A ,  B } ) )
108, 9syl 17 . . . . . . . 8  |-  ( G  e. UHGraph  ->  ( { A ,  B }  e.  ran  (iEdg `  G )  <->  E. i  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  i
)  =  { A ,  B } ) )
114, 10syl5bb 272 . . . . . . 7  |-  ( G  e. UHGraph  ->  ( { A ,  B }  e.  E  <->  E. i  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  i
)  =  { A ,  B } ) )
123eleq2i 2693 . . . . . . . 8  |-  ( { B ,  C }  e.  E  <->  { B ,  C }  e.  ran  (iEdg `  G ) )
13 fvelrnb 6243 . . . . . . . . 9  |-  ( (iEdg `  G )  Fn  dom  (iEdg `  G )  -> 
( { B ,  C }  e.  ran  (iEdg `  G )  <->  E. j  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  j
)  =  { B ,  C } ) )
148, 13syl 17 . . . . . . . 8  |-  ( G  e. UHGraph  ->  ( { B ,  C }  e.  ran  (iEdg `  G )  <->  E. j  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  j
)  =  { B ,  C } ) )
1512, 14syl5bb 272 . . . . . . 7  |-  ( G  e. UHGraph  ->  ( { B ,  C }  e.  E  <->  E. j  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  j
)  =  { B ,  C } ) )
1611, 15anbi12d 747 . . . . . 6  |-  ( G  e. UHGraph  ->  ( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  <->  ( E. i  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  E. j  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  j
)  =  { B ,  C } ) ) )
1716adantr 481 . . . . 5  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  <->  ( E. i  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  E. j  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  j
)  =  { B ,  C } ) ) )
1817adantr 481 . . . 4  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  <->  ( E. i  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  i )  =  { A ,  B }  /\  E. j  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  j )  =  { B ,  C }
) ) )
19 reeanv 3107 . . . 4  |-  ( E. i  e.  dom  (iEdg `  G ) E. j  e.  dom  (iEdg `  G
) ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
)  <->  ( E. i  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  E. j  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  j
)  =  { B ,  C } ) )
2018, 19syl6bbr 278 . . 3  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  <->  E. i  e.  dom  (iEdg `  G ) E. j  e.  dom  (iEdg `  G
) ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) ) )
21 df-s2 13593 . . . . . . . 8  |-  <" i
j ">  =  ( <" i "> ++  <" j "> )
2221ovexi 6679 . . . . . . 7  |-  <" i
j ">  e.  _V
23 df-s3 13594 . . . . . . . 8  |-  <" A B C ">  =  ( <" A B "> ++  <" C "> )
2423ovexi 6679 . . . . . . 7  |-  <" A B C ">  e.  _V
2522, 24pm3.2i 471 . . . . . 6  |-  ( <" i j ">  e.  _V  /\  <" A B C ">  e.  _V )
26 eqid 2622 . . . . . . . 8  |-  <" A B C ">  =  <" A B C ">
27 eqid 2622 . . . . . . . 8  |-  <" i
j ">  =  <" i j ">
28 simp-4r 807 . . . . . . . 8  |-  ( ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G
) ) )  /\  ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) )  ->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)
29 3simpb 1059 . . . . . . . . 9  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( A  =/=  B  /\  B  =/=  C ) )
3029ad3antlr 767 . . . . . . . 8  |-  ( ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G
) ) )  /\  ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) )  ->  ( A  =/=  B  /\  B  =/=  C ) )
31 eqimss2 3658 . . . . . . . . . 10  |-  ( ( (iEdg `  G ) `  i )  =  { A ,  B }  ->  { A ,  B }  C_  ( (iEdg `  G ) `  i
) )
32 eqimss2 3658 . . . . . . . . . 10  |-  ( ( (iEdg `  G ) `  j )  =  { B ,  C }  ->  { B ,  C }  C_  ( (iEdg `  G ) `  j
) )
3331, 32anim12i 590 . . . . . . . . 9  |-  ( ( ( (iEdg `  G
) `  i )  =  { A ,  B }  /\  ( (iEdg `  G ) `  j
)  =  { B ,  C } )  -> 
( { A ,  B }  C_  ( (iEdg `  G ) `  i
)  /\  { B ,  C }  C_  (
(iEdg `  G ) `  j ) ) )
3433adantl 482 . . . . . . . 8  |-  ( ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G
) ) )  /\  ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) )  ->  ( { A ,  B }  C_  ( (iEdg `  G
) `  i )  /\  { B ,  C }  C_  ( (iEdg `  G ) `  j
) ) )
35 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( i  =  j  ->  (
(iEdg `  G ) `  i )  =  ( (iEdg `  G ) `  j ) )
3635eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( i  =  j  ->  (
( (iEdg `  G
) `  i )  =  { A ,  B } 
<->  ( (iEdg `  G
) `  j )  =  { A ,  B } ) )
3736anbi1d 741 . . . . . . . . . . . . 13  |-  ( i  =  j  ->  (
( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
)  <->  ( ( (iEdg `  G ) `  j
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) ) )
38 eqtr2 2642 . . . . . . . . . . . . . 14  |-  ( ( ( (iEdg `  G
) `  j )  =  { A ,  B }  /\  ( (iEdg `  G ) `  j
)  =  { B ,  C } )  ->  { A ,  B }  =  { B ,  C } )
39 3simpa 1058 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A  e.  V  /\  B  e.  V
) )
40 3simpc 1060 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( B  e.  V  /\  C  e.  V
) )
41 preq12bg 4386 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  V  /\  B  e.  V
)  /\  ( B  e.  V  /\  C  e.  V ) )  -> 
( { A ,  B }  =  { B ,  C }  <->  ( ( A  =  B  /\  B  =  C )  \/  ( A  =  C  /\  B  =  B ) ) ) )
4239, 40, 41syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( { A ,  B }  =  { B ,  C }  <->  ( ( A  =  B  /\  B  =  C )  \/  ( A  =  C  /\  B  =  B ) ) ) )
43 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  =  B  ->  ( A  =/=  B  ->  i  =/=  j ) )
4443com12 32 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =/=  B  ->  ( A  =  B  ->  i  =/=  j ) )
45443ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( A  =  B  ->  i  =/=  j ) )
4645com12 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  =  B  ->  (
( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
)  ->  i  =/=  j ) )
4746adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  =  B  /\  B  =  C )  ->  ( ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
)  ->  i  =/=  j ) )
48 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  =  C  ->  ( A  =/=  C  ->  i  =/=  j ) )
4948com12 32 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =/=  C  ->  ( A  =  C  ->  i  =/=  j ) )
50493ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( A  =  C  ->  i  =/=  j ) )
5150com12 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  =  C  ->  (
( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
)  ->  i  =/=  j ) )
5251adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  =  C  /\  B  =  B )  ->  ( ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
)  ->  i  =/=  j ) )
5347, 52jaoi 394 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  =  B  /\  B  =  C )  \/  ( A  =  C  /\  B  =  B ) )  -> 
( ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
)  ->  i  =/=  j ) )
5442, 53syl6bi 243 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( { A ,  B }  =  { B ,  C }  ->  ( ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
)  ->  i  =/=  j ) ) )
5554com23 86 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( A  =/= 
B  /\  A  =/=  C  /\  B  =/=  C
)  ->  ( { A ,  B }  =  { B ,  C }  ->  i  =/=  j
) ) )
5655adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  ->  ( { A ,  B }  =  { B ,  C }  ->  i  =/=  j
) ) )
5756imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  ( { A ,  B }  =  { B ,  C }  ->  i  =/=  j
) )
5857com12 32 . . . . . . . . . . . . . 14  |-  ( { A ,  B }  =  { B ,  C }  ->  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  i  =/=  j ) )
5938, 58syl 17 . . . . . . . . . . . . 13  |-  ( ( ( (iEdg `  G
) `  j )  =  { A ,  B }  /\  ( (iEdg `  G ) `  j
)  =  { B ,  C } )  -> 
( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  i  =/=  j ) )
6037, 59syl6bi 243 . . . . . . . . . . . 12  |-  ( i  =  j  ->  (
( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
)  ->  ( (
( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  i  =/=  j ) ) )
6160com23 86 . . . . . . . . . . 11  |-  ( i  =  j  ->  (
( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
)  ->  i  =/=  j ) ) )
62 2a1 28 . . . . . . . . . . 11  |-  ( i  =/=  j  ->  (
( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
)  ->  i  =/=  j ) ) )
6361, 62pm2.61ine 2877 . . . . . . . . . 10  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  (
( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
)  ->  i  =/=  j ) )
6463adantr 481 . . . . . . . . 9  |-  ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  /\  ( i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G ) ) )  ->  ( ( ( (iEdg `  G ) `  i )  =  { A ,  B }  /\  ( (iEdg `  G
) `  j )  =  { B ,  C } )  ->  i  =/=  j ) )
6564imp 445 . . . . . . . 8  |-  ( ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G
) ) )  /\  ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) )  ->  i  =/=  j )
66 simplr2 1104 . . . . . . . . 9  |-  ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  /\  ( i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G ) ) )  ->  A  =/=  C
)
6766adantr 481 . . . . . . . 8  |-  ( ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G
) ) )  /\  ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) )  ->  A  =/=  C )
6826, 27, 28, 30, 34, 5, 6, 65, 672pthond 26838 . . . . . . 7  |-  ( ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G
) ) )  /\  ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) )  ->  <" i
j "> ( A (SPathsOn `  G ) C ) <" A B C "> )
69 s2len 13634 . . . . . . 7  |-  ( # `  <" i j "> )  =  2
7068, 69jctir 561 . . . . . 6  |-  ( ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G
) ) )  /\  ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) )  ->  ( <" i j "> ( A (SPathsOn `  G ) C )
<" A B C ">  /\  ( # `
 <" i j "> )  =  2 ) )
71 breq12 4658 . . . . . . . 8  |-  ( ( f  =  <" i
j ">  /\  p  =  <" A B C "> )  ->  ( f ( A (SPathsOn `  G ) C ) p  <->  <" i
j "> ( A (SPathsOn `  G ) C ) <" A B C "> )
)
72 fveq2 6191 . . . . . . . . . 10  |-  ( f  =  <" i j ">  ->  ( # `
 f )  =  ( # `  <" i j "> ) )
7372eqeq1d 2624 . . . . . . . . 9  |-  ( f  =  <" i j ">  ->  (
( # `  f )  =  2  <->  ( # `  <" i j "> )  =  2 ) )
7473adantr 481 . . . . . . . 8  |-  ( ( f  =  <" i
j ">  /\  p  =  <" A B C "> )  ->  ( ( # `  f
)  =  2  <->  ( # `
 <" i j "> )  =  2 ) )
7571, 74anbi12d 747 . . . . . . 7  |-  ( ( f  =  <" i
j ">  /\  p  =  <" A B C "> )  ->  ( ( f ( A (SPathsOn `  G
) C ) p  /\  ( # `  f
)  =  2 )  <-> 
( <" i j "> ( A (SPathsOn `  G ) C ) <" A B C ">  /\  ( # `
 <" i j "> )  =  2 ) ) )
7675spc2egv 3295 . . . . . 6  |-  ( (
<" i j ">  e.  _V  /\  <" A B C ">  e.  _V )  ->  ( ( <" i j "> ( A (SPathsOn `  G ) C )
<" A B C ">  /\  ( # `
 <" i j "> )  =  2 )  ->  E. f E. p ( f ( A (SPathsOn `  G
) C ) p  /\  ( # `  f
)  =  2 ) ) )
7725, 70, 76mpsyl 68 . . . . 5  |-  ( ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G
) ) )  /\  ( ( (iEdg `  G ) `  i
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  j )  =  { B ,  C }
) )  ->  E. f E. p ( f ( A (SPathsOn `  G
) C ) p  /\  ( # `  f
)  =  2 ) )
7877ex 450 . . . 4  |-  ( ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  /\  ( i  e.  dom  (iEdg `  G )  /\  j  e.  dom  (iEdg `  G ) ) )  ->  ( ( ( (iEdg `  G ) `  i )  =  { A ,  B }  /\  ( (iEdg `  G
) `  j )  =  { B ,  C } )  ->  E. f E. p ( f ( A (SPathsOn `  G
) C ) p  /\  ( # `  f
)  =  2 ) ) )
7978rexlimdvva 3038 . . 3  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  ( E. i  e.  dom  (iEdg `  G ) E. j  e.  dom  (iEdg `  G ) ( ( (iEdg `  G ) `  i )  =  { A ,  B }  /\  ( (iEdg `  G
) `  j )  =  { B ,  C } )  ->  E. f E. p ( f ( A (SPathsOn `  G
) C ) p  /\  ( # `  f
)  =  2 ) ) )
8020, 79sylbid 230 . 2  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. f E. p
( f ( A (SPathsOn `  G ) C ) p  /\  ( # `  f )  =  2 ) ) )
81803impia 1261 1  |-  ( ( ( G  e. UHGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) )  ->  E. f E. p ( f ( A (SPathsOn `  G
) C ) p  /\  ( # `  f
)  =  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   class class class wbr 4653   dom cdm 5114   ran crn 5115    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   2c2 11070   #chash 13117   ++ cconcat 13293   <"cs1 13294   <"cs2 13586   <"cs3 13587  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951  SPathsOncspthson 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-spthson 26615
This theorem is referenced by:  2pthfrgr  27148
  Copyright terms: Public domain W3C validator