Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssiun2sf Structured version   Visualization version   Unicode version

Theorem ssiun2sf 29378
Description: Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
ssiun2sf.1  |-  F/_ x A
ssiun2sf.2  |-  F/_ x C
ssiun2sf.3  |-  F/_ x D
ssiun2sf.4  |-  ( x  =  C  ->  B  =  D )
Assertion
Ref Expression
ssiun2sf  |-  ( C  e.  A  ->  D  C_ 
U_ x  e.  A  B )

Proof of Theorem ssiun2sf
StepHypRef Expression
1 ssiun2sf.2 . . 3  |-  F/_ x C
2 ssiun2sf.1 . . . . 5  |-  F/_ x A
31, 2nfel 2777 . . . 4  |-  F/ x  C  e.  A
4 ssiun2sf.3 . . . . 5  |-  F/_ x D
5 nfiu1 4550 . . . . 5  |-  F/_ x U_ x  e.  A  B
64, 5nfss 3596 . . . 4  |-  F/ x  D  C_  U_ x  e.  A  B
73, 6nfim 1825 . . 3  |-  F/ x
( C  e.  A  ->  D  C_  U_ x  e.  A  B )
8 eleq1 2689 . . . 4  |-  ( x  =  C  ->  (
x  e.  A  <->  C  e.  A ) )
9 ssiun2sf.4 . . . . 5  |-  ( x  =  C  ->  B  =  D )
109sseq1d 3632 . . . 4  |-  ( x  =  C  ->  ( B  C_  U_ x  e.  A  B  <->  D  C_  U_ x  e.  A  B )
)
118, 10imbi12d 334 . . 3  |-  ( x  =  C  ->  (
( x  e.  A  ->  B  C_  U_ x  e.  A  B )  <->  ( C  e.  A  ->  D  C_  U_ x  e.  A  B
) ) )
12 ssiun2 4563 . . 3  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
131, 7, 11, 12vtoclgf 3264 . 2  |-  ( C  e.  A  ->  ( C  e.  A  ->  D 
C_  U_ x  e.  A  B ) )
1413pm2.43i 52 1  |-  ( C  e.  A  ->  D  C_ 
U_ x  e.  A  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   F/_wnfc 2751    C_ wss 3574   U_ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-iun 4522
This theorem is referenced by:  iundisj2f  29403  esum2dlem  30154  voliune  30292  volfiniune  30293
  Copyright terms: Public domain W3C validator