MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitali Structured version   Visualization version   Unicode version

Theorem vitali 23382
Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
vitali  |-  (  .<  We  RR  ->  dom  vol  C.  ~P RR )

Proof of Theorem vitali
Dummy variables  a 
b  c  f  g  m  n  s  t  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10027 . . . 4  |-  RR  e.  _V
21pwex 4848 . . 3  |-  ~P RR  e.  _V
3 weinxp 5186 . . . . 5  |-  (  .<  We  RR  <->  (  .<  i^i  ( RR  X.  RR ) )  We  RR )
4 unipw 4918 . . . . . 6  |-  U. ~P RR  =  RR
5 weeq2 5103 . . . . . 6  |-  ( U. ~P RR  =  RR  ->  ( (  .<  i^i  ( RR  X.  RR ) )  We  U. ~P RR  <->  ( 
.<  i^i  ( RR  X.  RR ) )  We  RR ) )
64, 5ax-mp 5 . . . . 5  |-  ( ( 
.<  i^i  ( RR  X.  RR ) )  We  U. ~P RR  <->  (  .<  i^i  ( RR  X.  RR ) )  We  RR )
73, 6bitr4i 267 . . . 4  |-  (  .<  We  RR  <->  (  .<  i^i  ( RR  X.  RR ) )  We  U. ~P RR )
81, 1xpex 6962 . . . . . 6  |-  ( RR 
X.  RR )  e. 
_V
98inex2 4800 . . . . 5  |-  (  .<  i^i  ( RR  X.  RR ) )  e.  _V
10 weeq1 5102 . . . . 5  |-  ( x  =  (  .<  i^i  ( RR  X.  RR ) )  ->  ( x  We 
U. ~P RR  <->  (  .<  i^i  ( RR  X.  RR ) )  We  U. ~P RR ) )
119, 10spcev 3300 . . . 4  |-  ( ( 
.<  i^i  ( RR  X.  RR ) )  We  U. ~P RR  ->  E. x  x  We  U. ~P RR )
127, 11sylbi 207 . . 3  |-  (  .<  We  RR  ->  E. x  x  We  U. ~P RR )
13 dfac8c 8856 . . 3  |-  ( ~P RR  e.  _V  ->  ( E. x  x  We 
U. ~P RR  ->  E. f A. z  e. 
~P  RR ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
142, 12, 13mpsyl 68 . 2  |-  (  .<  We  RR  ->  E. f A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
15 qex 11800 . . . . . . 7  |-  QQ  e.  _V
1615inex1 4799 . . . . . 6  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  e. 
_V
17 nnrecq 11811 . . . . . . . 8  |-  ( x  e.  NN  ->  (
1  /  x )  e.  QQ )
18 nnrecre 11057 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
1  /  x )  e.  RR )
19 neg1rr 11125 . . . . . . . . . . 11  |-  -u 1  e.  RR
2019a1i 11 . . . . . . . . . 10  |-  ( x  e.  NN  ->  -u 1  e.  RR )
21 0re 10040 . . . . . . . . . . 11  |-  0  e.  RR
2221a1i 11 . . . . . . . . . 10  |-  ( x  e.  NN  ->  0  e.  RR )
23 neg1lt0 11127 . . . . . . . . . . . 12  |-  -u 1  <  0
2419, 21, 23ltleii 10160 . . . . . . . . . . 11  |-  -u 1  <_  0
2524a1i 11 . . . . . . . . . 10  |-  ( x  e.  NN  ->  -u 1  <_  0 )
26 nnrp 11842 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  e.  RR+ )
2726rpreccld 11882 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
1  /  x )  e.  RR+ )
2827rpge0d 11876 . . . . . . . . . 10  |-  ( x  e.  NN  ->  0  <_  ( 1  /  x
) )
2920, 22, 18, 25, 28letrd 10194 . . . . . . . . 9  |-  ( x  e.  NN  ->  -u 1  <_  ( 1  /  x
) )
30 nnge1 11046 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  1  <_  x )
31 nnre 11027 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  e.  RR )
32 nngt0 11049 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  0  <  x )
33 1re 10039 . . . . . . . . . . . . 13  |-  1  e.  RR
34 0lt1 10550 . . . . . . . . . . . . 13  |-  0  <  1
35 lerec 10906 . . . . . . . . . . . . 13  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( 1  <_  x  <->  ( 1  /  x )  <_  ( 1  / 
1 ) ) )
3633, 34, 35mpanl12 718 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <  x )  -> 
( 1  <_  x  <->  ( 1  /  x )  <_  ( 1  / 
1 ) ) )
3731, 32, 36syl2anc 693 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
1  <_  x  <->  ( 1  /  x )  <_ 
( 1  /  1
) ) )
3830, 37mpbid 222 . . . . . . . . . 10  |-  ( x  e.  NN  ->  (
1  /  x )  <_  ( 1  / 
1 ) )
39 1div1e1 10717 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
4038, 39syl6breq 4694 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
1  /  x )  <_  1 )
4119, 33elicc2i 12239 . . . . . . . . 9  |-  ( ( 1  /  x )  e.  ( -u 1 [,] 1 )  <->  ( (
1  /  x )  e.  RR  /\  -u 1  <_  ( 1  /  x
)  /\  ( 1  /  x )  <_ 
1 ) )
4218, 29, 40, 41syl3anbrc 1246 . . . . . . . 8  |-  ( x  e.  NN  ->  (
1  /  x )  e.  ( -u 1 [,] 1 ) )
4317, 42elind 3798 . . . . . . 7  |-  ( x  e.  NN  ->  (
1  /  x )  e.  ( QQ  i^i  ( -u 1 [,] 1
) ) )
44 oveq2 6658 . . . . . . . . 9  |-  ( ( 1  /  x )  =  ( 1  / 
y )  ->  (
1  /  ( 1  /  x ) )  =  ( 1  / 
( 1  /  y
) ) )
45 nncn 11028 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  CC )
46 nnne0 11053 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  =/=  0 )
4745, 46recrecd 10798 . . . . . . . . . 10  |-  ( x  e.  NN  ->  (
1  /  ( 1  /  x ) )  =  x )
48 nncn 11028 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
49 nnne0 11053 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  =/=  0 )
5048, 49recrecd 10798 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
1  /  ( 1  /  y ) )  =  y )
5147, 50eqeqan12d 2638 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( 1  / 
( 1  /  x
) )  =  ( 1  /  ( 1  /  y ) )  <-> 
x  =  y ) )
5244, 51syl5ib 234 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( 1  /  x )  =  ( 1  /  y )  ->  x  =  y ) )
53 oveq2 6658 . . . . . . . 8  |-  ( x  =  y  ->  (
1  /  x )  =  ( 1  / 
y ) )
5452, 53impbid1 215 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( 1  /  x )  =  ( 1  /  y )  <-> 
x  =  y ) )
5543, 54dom2 7998 . . . . . 6  |-  ( ( QQ  i^i  ( -u
1 [,] 1 ) )  e.  _V  ->  NN  ~<_  ( QQ  i^i  ( -u 1 [,] 1 ) ) )
5616, 55ax-mp 5 . . . . 5  |-  NN  ~<_  ( QQ 
i^i  ( -u 1 [,] 1 ) )
57 inss1 3833 . . . . . . 7  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  C_  QQ
58 ssdomg 8001 . . . . . . 7  |-  ( QQ  e.  _V  ->  (
( QQ  i^i  ( -u 1 [,] 1 ) )  C_  QQ  ->  ( QQ  i^i  ( -u
1 [,] 1 ) )  ~<_  QQ ) )
5915, 57, 58mp2 9 . . . . . 6  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  ~<_  QQ
60 qnnen 14942 . . . . . 6  |-  QQ  ~~  NN
61 domentr 8015 . . . . . 6  |-  ( ( ( QQ  i^i  ( -u 1 [,] 1 ) )  ~<_  QQ  /\  QQ  ~~  NN )  ->  ( QQ 
i^i  ( -u 1 [,] 1 ) )  ~<_  NN )
6259, 60, 61mp2an 708 . . . . 5  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  ~<_  NN
63 sbth 8080 . . . . 5  |-  ( ( NN  ~<_  ( QQ  i^i  ( -u 1 [,] 1
) )  /\  ( QQ  i^i  ( -u 1 [,] 1 ) )  ~<_  NN )  ->  NN  ~~  ( QQ  i^i  ( -u 1 [,] 1 ) ) )
6456, 62, 63mp2an 708 . . . 4  |-  NN  ~~  ( QQ  i^i  ( -u 1 [,] 1 ) )
65 bren 7964 . . . 4  |-  ( NN 
~~  ( QQ  i^i  ( -u 1 [,] 1
) )  <->  E. g 
g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
6664, 65mpbi 220 . . 3  |-  E. g 
g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )
67 eleq1 2689 . . . . . . . . . . . . 13  |-  ( a  =  x  ->  (
a  e.  ( 0 [,] 1 )  <->  x  e.  ( 0 [,] 1
) ) )
68 eleq1 2689 . . . . . . . . . . . . 13  |-  ( b  =  y  ->  (
b  e.  ( 0 [,] 1 )  <->  y  e.  ( 0 [,] 1
) ) )
6967, 68bi2anan9 917 . . . . . . . . . . . 12  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( a  e.  ( 0 [,] 1
)  /\  b  e.  ( 0 [,] 1
) )  <->  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) ) )
70 oveq12 6659 . . . . . . . . . . . . 13  |-  ( ( a  =  x  /\  b  =  y )  ->  ( a  -  b
)  =  ( x  -  y ) )
7170eleq1d 2686 . . . . . . . . . . . 12  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( a  -  b )  e.  QQ  <->  ( x  -  y )  e.  QQ ) )
7269, 71anbi12d 747 . . . . . . . . . . 11  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ )  <->  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) ) )
7372cbvopabv 4722 . . . . . . . . . 10  |-  { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) }  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
74 eqid 2622 . . . . . . . . . 10  |-  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  =  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )
75 fvex 6201 . . . . . . . . . . . 12  |-  ( f `
 c )  e. 
_V
76 eqid 2622 . . . . . . . . . . . 12  |-  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) )  =  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )
7775, 76fnmpti 6022 . . . . . . . . . . 11  |-  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) )  Fn  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )
7877a1i 11 . . . . . . . . . 10  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  Fn  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) )
79 neeq1 2856 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
z  =/=  (/)  <->  w  =/=  (/) ) )
80 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
f `  z )  =  ( f `  w ) )
81 id 22 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  z  =  w )
8280, 81eleq12d 2695 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
( f `  z
)  e.  z  <->  ( f `  w )  e.  w
) )
8379, 82imbi12d 334 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( w  =/=  (/)  ->  ( f `  w )  e.  w
) ) )
8483cbvralv 3171 . . . . . . . . . . . . 13  |-  ( A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  A. w  e.  ~P  RR ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
8573vitalilem1 23376 . . . . . . . . . . . . . . . . . 18  |-  { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) }  Er  ( 0 [,] 1
)
8685a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( T. 
->  { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) }  Er  (
0 [,] 1 ) )
8786qsss 7808 . . . . . . . . . . . . . . . 16  |-  ( T. 
->  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  C_  ~P (
0 [,] 1 ) )
8887trud 1493 . . . . . . . . . . . . . . 15  |-  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
C_  ~P ( 0 [,] 1 )
89 unitssre 12319 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  C_  RR
90 sspwb 4917 . . . . . . . . . . . . . . . 16  |-  ( ( 0 [,] 1 ) 
C_  RR  <->  ~P ( 0 [,] 1 )  C_  ~P RR )
9189, 90mpbi 220 . . . . . . . . . . . . . . 15  |-  ~P (
0 [,] 1 ) 
C_  ~P RR
9288, 91sstri 3612 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
C_  ~P RR
93 ssralv 3666 . . . . . . . . . . . . . 14  |-  ( ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
C_  ~P RR  ->  ( A. w  e.  ~P  RR ( w  =/=  (/)  ->  (
f `  w )  e.  w )  ->  A. w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  ( f `  w )  e.  w
) ) )
9492, 93ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. w  e.  ~P  RR ( w  =/=  (/)  ->  (
f `  w )  e.  w )  ->  A. w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
9584, 94sylbi 207 . . . . . . . . . . . 12  |-  ( A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
96 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( c  =  w  ->  (
f `  c )  =  ( f `  w ) )
97 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( f `
 w )  e. 
_V
9896, 76, 97fvmpt 6282 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  ->  (
( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) `  w
)  =  ( f `
 w ) )
9998eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  ->  (
( ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) ) `  w )  e.  w  <->  ( f `  w )  e.  w ) )
10099imbi2d 330 . . . . . . . . . . . . 13  |-  ( w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  ->  (
( w  =/=  (/)  ->  (
( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) `  w
)  e.  w )  <-> 
( w  =/=  (/)  ->  (
f `  w )  e.  w ) ) )
101100ralbiia 2979 . . . . . . . . . . . 12  |-  ( A. w  e.  ( (
0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  (
( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) `  w
)  e.  w )  <->  A. w  e.  (
( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  (
f `  w )  e.  w ) )
10295, 101sylibr 224 . . . . . . . . . . 11  |-  ( A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  ( ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) `
 w )  e.  w ) )
103102ad2antlr 763 . . . . . . . . . 10  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  A. w  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  (
( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) `  w
)  e.  w ) )
104 simprl 794 . . . . . . . . . 10  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
105 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( t  =  s  ->  (
t  -  ( g `
 m ) )  =  ( s  -  ( g `  m
) ) )
106105eleq1d 2686 . . . . . . . . . . . . 13  |-  ( t  =  s  ->  (
( t  -  (
g `  m )
)  e.  ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  <->  ( s  -  ( g `  m ) )  e. 
ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) ) ) )
107106cbvrabv 3199 . . . . . . . . . . . 12  |-  { t  e.  RR  |  ( t  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) }  =  { s  e.  RR  |  ( s  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) }
108 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( m  =  n  ->  (
g `  m )  =  ( g `  n ) )
109108oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
s  -  ( g `
 m ) )  =  ( s  -  ( g `  n
) ) )
110109eleq1d 2686 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( s  -  (
g `  m )
)  e.  ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  <->  ( s  -  ( g `  n ) )  e. 
ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) ) ) )
111110rabbidv 3189 . . . . . . . . . . . 12  |-  ( m  =  n  ->  { s  e.  RR  |  ( s  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) }  =  { s  e.  RR  |  ( s  -  ( g `
 n ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) } )
112107, 111syl5eq 2668 . . . . . . . . . . 11  |-  ( m  =  n  ->  { t  e.  RR  |  ( t  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) }  =  { s  e.  RR  |  ( s  -  ( g `
 n ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) } )
113112cbvmptv 4750 . . . . . . . . . 10  |-  ( m  e.  NN  |->  { t  e.  RR  |  ( t  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) } )  =  ( n  e.  NN  |->  { s  e.  RR  | 
( s  -  (
g `  n )
)  e.  ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) } )
114 simprr 796 . . . . . . . . . 10  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) )  e.  ( ~P RR  \  dom  vol ) )
11573, 74, 78, 103, 104, 113, 114vitalilem5 23381 . . . . . . . . 9  |-  -.  (
(  .<  We  RR  /\  A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )
116115pm2.21i 116 . . . . . . . 8  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) )
117116expr 643 . . . . . . 7  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )  ->  ( -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol )  ->  ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ( ~P RR  \  dom  vol ) ) )
118117pm2.18d 124 . . . . . 6  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )  ->  ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ( ~P RR  \  dom  vol ) )
119 eldif 3584 . . . . . . 7  |-  ( ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ( ~P RR  \  dom  vol )  <->  ( ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ~P RR  /\  -.  ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  dom  vol ) )
120 mblss 23299 . . . . . . . . . 10  |-  ( x  e.  dom  vol  ->  x 
C_  RR )
121 selpw 4165 . . . . . . . . . 10  |-  ( x  e.  ~P RR  <->  x  C_  RR )
122120, 121sylibr 224 . . . . . . . . 9  |-  ( x  e.  dom  vol  ->  x  e.  ~P RR )
123122ssriv 3607 . . . . . . . 8  |-  dom  vol  C_ 
~P RR
124 ssnelpss 3718 . . . . . . . 8  |-  ( dom 
vol  C_  ~P RR  ->  ( ( ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) )  e.  ~P RR  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e. 
dom  vol )  ->  dom  vol  C.  ~P RR ) )
125123, 124ax-mp 5 . . . . . . 7  |-  ( ( ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e. 
~P RR  /\  -.  ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  dom  vol )  ->  dom  vol  C.  ~P RR )
126119, 125sylbi 207 . . . . . 6  |-  ( ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ( ~P RR  \  dom  vol )  ->  dom  vol  C.  ~P RR )
127118, 126syl 17 . . . . 5  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )  ->  dom  vol  C.  ~P RR )
128127ex 450 . . . 4  |-  ( ( 
.<  We  RR  /\  A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  ->  dom  vol  C.  ~P RR ) )
129128exlimdv 1861 . . 3  |-  ( ( 
.<  We  RR  /\  A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( E. g  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  ->  dom  vol  C.  ~P RR ) )
13066, 129mpi 20 . 2  |-  ( ( 
.<  We  RR  /\  A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  ->  dom  vol  C.  ~P RR )
13114, 130exlimddv 1863 1  |-  (  .<  We  RR  ->  dom  vol  C.  ~P RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574    C. wpss 3575   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   {copab 4712    |-> cmpt 4729    We wwe 5072    X. cxp 5112   dom cdm 5114   ran crn 5115    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    Er wer 7739   /.cqs 7741    ~~ cen 7952    ~<_ cdom 7953   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   QQcq 11788   [,]cicc 12178   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  vitali2  40908
  Copyright terms: Public domain W3C validator