MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssps Structured version   Visualization version   Unicode version

Theorem ssps 27585
Description: Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ssps.y  |-  Y  =  ( BaseSet `  W )
ssps.s  |-  S  =  ( .sOLD `  U )
ssps.r  |-  R  =  ( .sOLD `  W )
ssps.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
ssps  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  R  =  ( S  |`  ( CC  X.  Y
) ) )

Proof of Theorem ssps
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . . . . 11  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2 ssps.s . . . . . . . . . . 11  |-  S  =  ( .sOLD `  U )
31, 2nvsf 27474 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  S : ( CC  X.  ( BaseSet `  U ) ) --> (
BaseSet `  U ) )
4 ffun 6048 . . . . . . . . . 10  |-  ( S : ( CC  X.  ( BaseSet `  U )
) --> ( BaseSet `  U
)  ->  Fun  S )
53, 4syl 17 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  Fun  S )
6 funres 5929 . . . . . . . . 9  |-  ( Fun 
S  ->  Fun  ( S  |`  ( CC  X.  Y
) ) )
75, 6syl 17 . . . . . . . 8  |-  ( U  e.  NrmCVec  ->  Fun  ( S  |`  ( CC  X.  Y
) ) )
87adantr 481 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  Fun  ( S  |`  ( CC 
X.  Y ) ) )
9 ssps.h . . . . . . . . . 10  |-  H  =  ( SubSp `  U )
109sspnv 27581 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  W  e.  NrmCVec )
11 ssps.y . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
12 ssps.r . . . . . . . . . 10  |-  R  =  ( .sOLD `  W )
1311, 12nvsf 27474 . . . . . . . . 9  |-  ( W  e.  NrmCVec  ->  R : ( CC  X.  Y ) --> Y )
1410, 13syl 17 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  R : ( CC  X.  Y ) --> Y )
15 ffn 6045 . . . . . . . 8  |-  ( R : ( CC  X.  Y ) --> Y  ->  R  Fn  ( CC  X.  Y ) )
1614, 15syl 17 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  R  Fn  ( CC  X.  Y
) )
17 fnresdm 6000 . . . . . . . . 9  |-  ( R  Fn  ( CC  X.  Y )  ->  ( R  |`  ( CC  X.  Y ) )  =  R )
1816, 17syl 17 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( R  |`  ( CC  X.  Y ) )  =  R )
19 eqid 2622 . . . . . . . . . . . 12  |-  ( +v
`  U )  =  ( +v `  U
)
20 eqid 2622 . . . . . . . . . . . 12  |-  ( +v
`  W )  =  ( +v `  W
)
21 eqid 2622 . . . . . . . . . . . 12  |-  ( normCV `  U )  =  (
normCV
`  U )
22 eqid 2622 . . . . . . . . . . . 12  |-  ( normCV `  W )  =  (
normCV
`  W )
2319, 20, 2, 12, 21, 22, 9isssp 27579 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  ( W  e.  H  <->  ( W  e.  NrmCVec 
/\  ( ( +v
`  W )  C_  ( +v `  U )  /\  R  C_  S  /\  ( normCV `  W )  C_  ( normCV `  U ) ) ) ) )
2423simplbda 654 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  (
( +v `  W
)  C_  ( +v `  U )  /\  R  C_  S  /\  ( normCV `  W )  C_  ( normCV `  U ) ) )
2524simp2d 1074 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  R  C_  S )
26 ssres 5424 . . . . . . . . 9  |-  ( R 
C_  S  ->  ( R  |`  ( CC  X.  Y ) )  C_  ( S  |`  ( CC 
X.  Y ) ) )
2725, 26syl 17 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( R  |`  ( CC  X.  Y ) )  C_  ( S  |`  ( CC 
X.  Y ) ) )
2818, 27eqsstr3d 3640 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  R  C_  ( S  |`  ( CC  X.  Y ) ) )
298, 16, 283jca 1242 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( Fun  ( S  |`  ( CC  X.  Y ) )  /\  R  Fn  ( CC  X.  Y )  /\  R  C_  ( S  |`  ( CC  X.  Y
) ) ) )
30 oprssov 6803 . . . . . 6  |-  ( ( ( Fun  ( S  |`  ( CC  X.  Y
) )  /\  R  Fn  ( CC  X.  Y
)  /\  R  C_  ( S  |`  ( CC  X.  Y ) ) )  /\  ( x  e.  CC  /\  y  e.  Y ) )  -> 
( x ( S  |`  ( CC  X.  Y
) ) y )  =  ( x R y ) )
3129, 30sylan 488 . . . . 5  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( x  e.  CC  /\  y  e.  Y ) )  ->  ( x
( S  |`  ( CC  X.  Y ) ) y )  =  ( x R y ) )
3231eqcomd 2628 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( x  e.  CC  /\  y  e.  Y ) )  ->  ( x R y )  =  ( x ( S  |`  ( CC  X.  Y
) ) y ) )
3332ralrimivva 2971 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  A. x  e.  CC  A. y  e.  Y  ( x R y )  =  ( x ( S  |`  ( CC  X.  Y
) ) y ) )
34 eqid 2622 . . 3  |-  ( CC 
X.  Y )  =  ( CC  X.  Y
)
3533, 34jctil 560 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  (
( CC  X.  Y
)  =  ( CC 
X.  Y )  /\  A. x  e.  CC  A. y  e.  Y  (
x R y )  =  ( x ( S  |`  ( CC  X.  Y ) ) y ) ) )
36 ffn 6045 . . . . . 6  |-  ( S : ( CC  X.  ( BaseSet `  U )
) --> ( BaseSet `  U
)  ->  S  Fn  ( CC  X.  ( BaseSet
`  U ) ) )
373, 36syl 17 . . . . 5  |-  ( U  e.  NrmCVec  ->  S  Fn  ( CC  X.  ( BaseSet `  U
) ) )
3837adantr 481 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  S  Fn  ( CC  X.  ( BaseSet
`  U ) ) )
39 ssid 3624 . . . . 5  |-  CC  C_  CC
401, 11, 9sspba 27582 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  Y  C_  ( BaseSet `  U )
)
41 xpss12 5225 . . . . 5  |-  ( ( CC  C_  CC  /\  Y  C_  ( BaseSet `  U )
)  ->  ( CC  X.  Y )  C_  ( CC  X.  ( BaseSet `  U
) ) )
4239, 40, 41sylancr 695 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( CC  X.  Y )  C_  ( CC  X.  ( BaseSet
`  U ) ) )
43 fnssres 6004 . . . 4  |-  ( ( S  Fn  ( CC 
X.  ( BaseSet `  U
) )  /\  ( CC  X.  Y )  C_  ( CC  X.  ( BaseSet
`  U ) ) )  ->  ( S  |`  ( CC  X.  Y
) )  Fn  ( CC  X.  Y ) )
4438, 42, 43syl2anc 693 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( S  |`  ( CC  X.  Y ) )  Fn  ( CC  X.  Y
) )
45 eqfnov 6766 . . 3  |-  ( ( R  Fn  ( CC 
X.  Y )  /\  ( S  |`  ( CC 
X.  Y ) )  Fn  ( CC  X.  Y ) )  -> 
( R  =  ( S  |`  ( CC  X.  Y ) )  <->  ( ( CC  X.  Y )  =  ( CC  X.  Y
)  /\  A. x  e.  CC  A. y  e.  Y  ( x R y )  =  ( x ( S  |`  ( CC  X.  Y
) ) y ) ) ) )
4616, 44, 45syl2anc 693 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( R  =  ( S  |`  ( CC  X.  Y
) )  <->  ( ( CC  X.  Y )  =  ( CC  X.  Y
)  /\  A. x  e.  CC  A. y  e.  Y  ( x R y )  =  ( x ( S  |`  ( CC  X.  Y
) ) y ) ) ) )
4735, 46mpbird 247 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  R  =  ( S  |`  ( CC  X.  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    X. cxp 5112    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   normCVcnmcv 27445   SubSpcss 27576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-ssp 27577
This theorem is referenced by:  sspsval  27586
  Copyright terms: Public domain W3C validator