| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspval | Structured version Visualization version Unicode version | ||
| Description: The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspval.g |
|
| sspval.s |
|
| sspval.n |
|
| sspval.h |
|
| Ref | Expression |
|---|---|
| sspval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspval.h |
. 2
| |
| 2 | fveq2 6191 |
. . . . . . 7
| |
| 3 | sspval.g |
. . . . . . 7
| |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . . 6
|
| 5 | 4 | sseq2d 3633 |
. . . . 5
|
| 6 | fveq2 6191 |
. . . . . . 7
| |
| 7 | sspval.s |
. . . . . . 7
| |
| 8 | 6, 7 | syl6eqr 2674 |
. . . . . 6
|
| 9 | 8 | sseq2d 3633 |
. . . . 5
|
| 10 | fveq2 6191 |
. . . . . . 7
| |
| 11 | sspval.n |
. . . . . . 7
| |
| 12 | 10, 11 | syl6eqr 2674 |
. . . . . 6
|
| 13 | 12 | sseq2d 3633 |
. . . . 5
|
| 14 | 5, 9, 13 | 3anbi123d 1399 |
. . . 4
|
| 15 | 14 | rabbidv 3189 |
. . 3
|
| 16 | df-ssp 27577 |
. . 3
| |
| 17 | fvex 6201 |
. . . . . . . 8
| |
| 18 | 3, 17 | eqeltri 2697 |
. . . . . . 7
|
| 19 | 18 | pwex 4848 |
. . . . . 6
|
| 20 | fvex 6201 |
. . . . . . . 8
| |
| 21 | 7, 20 | eqeltri 2697 |
. . . . . . 7
|
| 22 | 21 | pwex 4848 |
. . . . . 6
|
| 23 | 19, 22 | xpex 6962 |
. . . . 5
|
| 24 | fvex 6201 |
. . . . . . 7
| |
| 25 | 11, 24 | eqeltri 2697 |
. . . . . 6
|
| 26 | 25 | pwex 4848 |
. . . . 5
|
| 27 | 23, 26 | xpex 6962 |
. . . 4
|
| 28 | rabss 3679 |
. . . . 5
| |
| 29 | fvex 6201 |
. . . . . . . . . 10
| |
| 30 | 29 | elpw 4164 |
. . . . . . . . 9
|
| 31 | fvex 6201 |
. . . . . . . . . 10
| |
| 32 | 31 | elpw 4164 |
. . . . . . . . 9
|
| 33 | opelxpi 5148 |
. . . . . . . . 9
| |
| 34 | 30, 32, 33 | syl2anbr 497 |
. . . . . . . 8
|
| 35 | fvex 6201 |
. . . . . . . . . 10
| |
| 36 | 35 | elpw 4164 |
. . . . . . . . 9
|
| 37 | 36 | biimpri 218 |
. . . . . . . 8
|
| 38 | opelxpi 5148 |
. . . . . . . 8
| |
| 39 | 34, 37, 38 | syl2an 494 |
. . . . . . 7
|
| 40 | 39 | 3impa 1259 |
. . . . . 6
|
| 41 | eqid 2622 |
. . . . . . . 8
| |
| 42 | eqid 2622 |
. . . . . . . 8
| |
| 43 | eqid 2622 |
. . . . . . . 8
| |
| 44 | 41, 42, 43 | nvop 27531 |
. . . . . . 7
|
| 45 | 44 | eleq1d 2686 |
. . . . . 6
|
| 46 | 40, 45 | syl5ibr 236 |
. . . . 5
|
| 47 | 28, 46 | mprgbir 2927 |
. . . 4
|
| 48 | 27, 47 | ssexi 4803 |
. . 3
|
| 49 | 15, 16, 48 | fvmpt 6282 |
. 2
|
| 50 | 1, 49 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-oprab 6654 df-1st 7168 df-2nd 7169 df-vc 27414 df-nv 27447 df-va 27450 df-sm 27452 df-nmcv 27455 df-ssp 27577 |
| This theorem is referenced by: isssp 27579 |
| Copyright terms: Public domain | W3C validator |