MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspval Structured version   Visualization version   Unicode version

Theorem sspval 27578
Description: The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspval.g  |-  G  =  ( +v `  U
)
sspval.s  |-  S  =  ( .sOLD `  U )
sspval.n  |-  N  =  ( normCV `  U )
sspval.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
sspval  |-  ( U  e.  NrmCVec  ->  H  =  {
w  e.  NrmCVec  |  ( ( +v `  w
)  C_  G  /\  ( .sOLD `  w
)  C_  S  /\  ( normCV `  w )  C_  N ) } )
Distinct variable groups:    w, G    w, N    w, S    w, U
Allowed substitution hint:    H( w)

Proof of Theorem sspval
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 sspval.h . 2  |-  H  =  ( SubSp `  U )
2 fveq2 6191 . . . . . . 7  |-  ( u  =  U  ->  ( +v `  u )  =  ( +v `  U
) )
3 sspval.g . . . . . . 7  |-  G  =  ( +v `  U
)
42, 3syl6eqr 2674 . . . . . 6  |-  ( u  =  U  ->  ( +v `  u )  =  G )
54sseq2d 3633 . . . . 5  |-  ( u  =  U  ->  (
( +v `  w
)  C_  ( +v `  u )  <->  ( +v `  w )  C_  G
) )
6 fveq2 6191 . . . . . . 7  |-  ( u  =  U  ->  ( .sOLD `  u )  =  ( .sOLD `  U ) )
7 sspval.s . . . . . . 7  |-  S  =  ( .sOLD `  U )
86, 7syl6eqr 2674 . . . . . 6  |-  ( u  =  U  ->  ( .sOLD `  u )  =  S )
98sseq2d 3633 . . . . 5  |-  ( u  =  U  ->  (
( .sOLD `  w )  C_  ( .sOLD `  u )  <-> 
( .sOLD `  w )  C_  S
) )
10 fveq2 6191 . . . . . . 7  |-  ( u  =  U  ->  ( normCV `  u )  =  (
normCV
`  U ) )
11 sspval.n . . . . . . 7  |-  N  =  ( normCV `  U )
1210, 11syl6eqr 2674 . . . . . 6  |-  ( u  =  U  ->  ( normCV `  u )  =  N )
1312sseq2d 3633 . . . . 5  |-  ( u  =  U  ->  (
( normCV `  w )  C_  ( normCV `  u )  <->  ( normCV `  w
)  C_  N )
)
145, 9, 133anbi123d 1399 . . . 4  |-  ( u  =  U  ->  (
( ( +v `  w )  C_  ( +v `  u )  /\  ( .sOLD `  w
)  C_  ( .sOLD `  u )  /\  ( normCV `  w )  C_  ( normCV `  u ) )  <-> 
( ( +v `  w )  C_  G  /\  ( .sOLD `  w )  C_  S  /\  ( normCV `  w )  C_  N ) ) )
1514rabbidv 3189 . . 3  |-  ( u  =  U  ->  { w  e.  NrmCVec  |  ( ( +v `  w ) 
C_  ( +v `  u )  /\  ( .sOLD `  w ) 
C_  ( .sOLD `  u )  /\  ( normCV `  w )  C_  ( normCV `  u ) ) }  =  { w  e.  NrmCVec  |  ( ( +v
`  w )  C_  G  /\  ( .sOLD `  w )  C_  S  /\  ( normCV `  w )  C_  N ) } )
16 df-ssp 27577 . . 3  |-  SubSp  =  ( u  e.  NrmCVec  |->  { w  e.  NrmCVec  |  ( ( +v `  w ) 
C_  ( +v `  u )  /\  ( .sOLD `  w ) 
C_  ( .sOLD `  u )  /\  ( normCV `  w )  C_  ( normCV `  u ) ) } )
17 fvex 6201 . . . . . . . 8  |-  ( +v
`  U )  e. 
_V
183, 17eqeltri 2697 . . . . . . 7  |-  G  e. 
_V
1918pwex 4848 . . . . . 6  |-  ~P G  e.  _V
20 fvex 6201 . . . . . . . 8  |-  ( .sOLD `  U )  e.  _V
217, 20eqeltri 2697 . . . . . . 7  |-  S  e. 
_V
2221pwex 4848 . . . . . 6  |-  ~P S  e.  _V
2319, 22xpex 6962 . . . . 5  |-  ( ~P G  X.  ~P S
)  e.  _V
24 fvex 6201 . . . . . . 7  |-  ( normCV `  U )  e.  _V
2511, 24eqeltri 2697 . . . . . 6  |-  N  e. 
_V
2625pwex 4848 . . . . 5  |-  ~P N  e.  _V
2723, 26xpex 6962 . . . 4  |-  ( ( ~P G  X.  ~P S )  X.  ~P N )  e.  _V
28 rabss 3679 . . . . 5  |-  ( { w  e.  NrmCVec  |  ( ( +v `  w
)  C_  G  /\  ( .sOLD `  w
)  C_  S  /\  ( normCV `  w )  C_  N ) }  C_  ( ( ~P G  X.  ~P S )  X. 
~P N )  <->  A. w  e.  NrmCVec  ( ( ( +v `  w ) 
C_  G  /\  ( .sOLD `  w ) 
C_  S  /\  ( normCV `  w )  C_  N
)  ->  w  e.  ( ( ~P G  X.  ~P S )  X. 
~P N ) ) )
29 fvex 6201 . . . . . . . . . 10  |-  ( +v
`  w )  e. 
_V
3029elpw 4164 . . . . . . . . 9  |-  ( ( +v `  w )  e.  ~P G  <->  ( +v `  w )  C_  G
)
31 fvex 6201 . . . . . . . . . 10  |-  ( .sOLD `  w )  e.  _V
3231elpw 4164 . . . . . . . . 9  |-  ( ( .sOLD `  w
)  e.  ~P S  <->  ( .sOLD `  w
)  C_  S )
33 opelxpi 5148 . . . . . . . . 9  |-  ( ( ( +v `  w
)  e.  ~P G  /\  ( .sOLD `  w )  e.  ~P S )  ->  <. ( +v `  w ) ,  ( .sOLD `  w ) >.  e.  ( ~P G  X.  ~P S ) )
3430, 32, 33syl2anbr 497 . . . . . . . 8  |-  ( ( ( +v `  w
)  C_  G  /\  ( .sOLD `  w
)  C_  S )  -> 
<. ( +v `  w
) ,  ( .sOLD `  w )
>.  e.  ( ~P G  X.  ~P S ) )
35 fvex 6201 . . . . . . . . . 10  |-  ( normCV `  w )  e.  _V
3635elpw 4164 . . . . . . . . 9  |-  ( (
normCV
`  w )  e. 
~P N  <->  ( normCV `  w
)  C_  N )
3736biimpri 218 . . . . . . . 8  |-  ( (
normCV
`  w )  C_  N  ->  ( normCV `  w
)  e.  ~P N
)
38 opelxpi 5148 . . . . . . . 8  |-  ( (
<. ( +v `  w
) ,  ( .sOLD `  w )
>.  e.  ( ~P G  X.  ~P S )  /\  ( normCV `  w )  e. 
~P N )  ->  <. <. ( +v `  w ) ,  ( .sOLD `  w
) >. ,  ( normCV `  w ) >.  e.  ( ( ~P G  X.  ~P S )  X.  ~P N ) )
3934, 37, 38syl2an 494 . . . . . . 7  |-  ( ( ( ( +v `  w )  C_  G  /\  ( .sOLD `  w )  C_  S
)  /\  ( normCV `  w
)  C_  N )  -> 
<. <. ( +v `  w ) ,  ( .sOLD `  w
) >. ,  ( normCV `  w ) >.  e.  ( ( ~P G  X.  ~P S )  X.  ~P N ) )
40393impa 1259 . . . . . 6  |-  ( ( ( +v `  w
)  C_  G  /\  ( .sOLD `  w
)  C_  S  /\  ( normCV `  w )  C_  N )  ->  <. <. ( +v `  w ) ,  ( .sOLD `  w ) >. ,  (
normCV
`  w ) >.  e.  ( ( ~P G  X.  ~P S )  X. 
~P N ) )
41 eqid 2622 . . . . . . . 8  |-  ( +v
`  w )  =  ( +v `  w
)
42 eqid 2622 . . . . . . . 8  |-  ( .sOLD `  w )  =  ( .sOLD `  w )
43 eqid 2622 . . . . . . . 8  |-  ( normCV `  w )  =  (
normCV
`  w )
4441, 42, 43nvop 27531 . . . . . . 7  |-  ( w  e.  NrmCVec  ->  w  =  <. <.
( +v `  w
) ,  ( .sOLD `  w )
>. ,  ( normCV `  w
) >. )
4544eleq1d 2686 . . . . . 6  |-  ( w  e.  NrmCVec  ->  ( w  e.  ( ( ~P G  X.  ~P S )  X. 
~P N )  <->  <. <. ( +v `  w ) ,  ( .sOLD `  w ) >. ,  (
normCV
`  w ) >.  e.  ( ( ~P G  X.  ~P S )  X. 
~P N ) ) )
4640, 45syl5ibr 236 . . . . 5  |-  ( w  e.  NrmCVec  ->  ( ( ( +v `  w ) 
C_  G  /\  ( .sOLD `  w ) 
C_  S  /\  ( normCV `  w )  C_  N
)  ->  w  e.  ( ( ~P G  X.  ~P S )  X. 
~P N ) ) )
4728, 46mprgbir 2927 . . . 4  |-  { w  e.  NrmCVec  |  ( ( +v `  w ) 
C_  G  /\  ( .sOLD `  w ) 
C_  S  /\  ( normCV `  w )  C_  N
) }  C_  (
( ~P G  X.  ~P S )  X.  ~P N )
4827, 47ssexi 4803 . . 3  |-  { w  e.  NrmCVec  |  ( ( +v `  w ) 
C_  G  /\  ( .sOLD `  w ) 
C_  S  /\  ( normCV `  w )  C_  N
) }  e.  _V
4915, 16, 48fvmpt 6282 . 2  |-  ( U  e.  NrmCVec  ->  ( SubSp `  U
)  =  { w  e.  NrmCVec  |  ( ( +v `  w ) 
C_  G  /\  ( .sOLD `  w ) 
C_  S  /\  ( normCV `  w )  C_  N
) } )
501, 49syl5eq 2668 1  |-  ( U  e.  NrmCVec  ->  H  =  {
w  e.  NrmCVec  |  ( ( +v `  w
)  C_  G  /\  ( .sOLD `  w
)  C_  S  /\  ( normCV `  w )  C_  N ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   <.cop 4183    X. cxp 5112   ` cfv 5888   NrmCVeccnv 27439   +vcpv 27440   .sOLDcns 27442   normCVcnmcv 27445   SubSpcss 27576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-sm 27452  df-nmcv 27455  df-ssp 27577
This theorem is referenced by:  isssp  27579
  Copyright terms: Public domain W3C validator