MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrel2 Structured version   Visualization version   Unicode version

Theorem ssrel2 5210
Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 5207 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Assertion
Ref Expression
ssrel2  |-  ( R 
C_  ( A  X.  B )  ->  ( R  C_  S  <->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, R, y    x, S, y

Proof of Theorem ssrel2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . 4  |-  ( R 
C_  S  ->  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
) )
21a1d 25 . . 3  |-  ( R 
C_  S  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
32ralrimivv 2970 . 2  |-  ( R 
C_  S  ->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) )
4 eleq1 2689 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  <->  <. x ,  y
>.  e.  R ) )
5 eleq1 2689 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  S  <->  <. x ,  y
>.  e.  S ) )
64, 5imbi12d 334 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( ( z  e.  R  ->  z  e.  S )  <->  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
76biimprcd 240 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
872ralimi 2953 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  A. x  e.  A  A. y  e.  B  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
9 r19.23v 3023 . . . . . . . . . 10  |-  ( A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
109ralbii 2980 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  A. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
11 r19.23v 3023 . . . . . . . . 9  |-  ( A. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1210, 11bitri 264 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
138, 12sylib 208 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1413com23 86 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( z  e.  R  ->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  z  e.  S
) ) )
1514a2d 29 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( (
z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. )  ->  (
z  e.  R  -> 
z  e.  S ) ) )
1615alimdv 1845 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( A. z ( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.
)  ->  A. z
( z  e.  R  ->  z  e.  S ) ) )
17 dfss2 3591 . . . . 5  |-  ( R 
C_  ( A  X.  B )  <->  A. z
( z  e.  R  ->  z  e.  ( A  X.  B ) ) )
18 elxp2 5132 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  <->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.
)
1918imbi2i 326 . . . . . 6  |-  ( ( z  e.  R  -> 
z  e.  ( A  X.  B ) )  <-> 
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
2019albii 1747 . . . . 5  |-  ( A. z ( z  e.  R  ->  z  e.  ( A  X.  B
) )  <->  A. z
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
2117, 20bitri 264 . . . 4  |-  ( R 
C_  ( A  X.  B )  <->  A. z
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
22 dfss2 3591 . . . 4  |-  ( R 
C_  S  <->  A. z
( z  e.  R  ->  z  e.  S ) )
2316, 21, 223imtr4g 285 . . 3  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( R  C_  ( A  X.  B
)  ->  R  C_  S
) )
2423com12 32 . 2  |-  ( R 
C_  ( A  X.  B )  ->  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y
>.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  R  C_  S
) )
253, 24impbid2 216 1  |-  ( R 
C_  ( A  X.  B )  ->  ( R  C_  S  <->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   <.cop 4183    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120
This theorem is referenced by:  metuel2  22370  isarchi  29736
  Copyright terms: Public domain W3C validator