MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrelrn Structured version   Visualization version   Unicode version

Theorem ssrelrn 5315
Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.)
Assertion
Ref Expression
ssrelrn  |-  ( ( R  C_  ( A  X.  B )  /\  Y  e.  ran  R )  ->  E. a  e.  A  a R Y )
Distinct variable groups:    A, a    B, a    R, a    Y, a

Proof of Theorem ssrelrn
StepHypRef Expression
1 elrng 5314 . . . . 5  |-  ( Y  e.  ran  R  -> 
( Y  e.  ran  R  <->  E. a  a R Y ) )
2 id 22 . . . . . . . . . . . 12  |-  ( R 
C_  ( A  X.  B )  ->  R  C_  ( A  X.  B
) )
32ssbrd 4696 . . . . . . . . . . 11  |-  ( R 
C_  ( A  X.  B )  ->  (
a R Y  -> 
a ( A  X.  B ) Y ) )
4 brxp 5147 . . . . . . . . . . . 12  |-  ( a ( A  X.  B
) Y  <->  ( a  e.  A  /\  Y  e.  B ) )
54simplbi 476 . . . . . . . . . . 11  |-  ( a ( A  X.  B
) Y  ->  a  e.  A )
63, 5syl6 35 . . . . . . . . . 10  |-  ( R 
C_  ( A  X.  B )  ->  (
a R Y  -> 
a  e.  A ) )
76ancrd 577 . . . . . . . . 9  |-  ( R 
C_  ( A  X.  B )  ->  (
a R Y  -> 
( a  e.  A  /\  a R Y ) ) )
87adantl 482 . . . . . . . 8  |-  ( ( Y  e.  ran  R  /\  R  C_  ( A  X.  B ) )  ->  ( a R Y  ->  ( a  e.  A  /\  a R Y ) ) )
98eximdv 1846 . . . . . . 7  |-  ( ( Y  e.  ran  R  /\  R  C_  ( A  X.  B ) )  ->  ( E. a 
a R Y  ->  E. a ( a  e.  A  /\  a R Y ) ) )
109ex 450 . . . . . 6  |-  ( Y  e.  ran  R  -> 
( R  C_  ( A  X.  B )  -> 
( E. a  a R Y  ->  E. a
( a  e.  A  /\  a R Y ) ) ) )
1110com23 86 . . . . 5  |-  ( Y  e.  ran  R  -> 
( E. a  a R Y  ->  ( R  C_  ( A  X.  B )  ->  E. a
( a  e.  A  /\  a R Y ) ) ) )
121, 11sylbid 230 . . . 4  |-  ( Y  e.  ran  R  -> 
( Y  e.  ran  R  ->  ( R  C_  ( A  X.  B
)  ->  E. a
( a  e.  A  /\  a R Y ) ) ) )
1312pm2.43i 52 . . 3  |-  ( Y  e.  ran  R  -> 
( R  C_  ( A  X.  B )  ->  E. a ( a  e.  A  /\  a R Y ) ) )
1413impcom 446 . 2  |-  ( ( R  C_  ( A  X.  B )  /\  Y  e.  ran  R )  ->  E. a ( a  e.  A  /\  a R Y ) )
15 df-rex 2918 . 2  |-  ( E. a  e.  A  a R Y  <->  E. a
( a  e.  A  /\  a R Y ) )
1614, 15sylibr 224 1  |-  ( ( R  C_  ( A  X.  B )  /\  Y  e.  ran  R )  ->  E. a  e.  A  a R Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   E.wex 1704    e. wcel 1990   E.wrex 2913    C_ wss 3574   class class class wbr 4653    X. cxp 5112   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  incistruhgr  25974
  Copyright terms: Public domain W3C validator