MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrnres Structured version   Visualization version   Unicode version

Theorem ssrnres 5572
Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
ssrnres  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )

Proof of Theorem ssrnres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3834 . . . . 5  |-  ( C  i^i  ( A  X.  B ) )  C_  ( A  X.  B
)
2 rnss 5354 . . . . 5  |-  ( ( C  i^i  ( A  X.  B ) ) 
C_  ( A  X.  B )  ->  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( A  X.  B ) )
31, 2ax-mp 5 . . . 4  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  ran  ( A  X.  B
)
4 rnxpss 5566 . . . 4  |-  ran  ( A  X.  B )  C_  B
53, 4sstri 3612 . . 3  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  B
6 eqss 3618 . . 3  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  ( ran  ( C  i^i  ( A  X.  B ) ) 
C_  B  /\  B  C_ 
ran  ( C  i^i  ( A  X.  B
) ) ) )
75, 6mpbiran 953 . 2  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  B  C_  ran  ( C  i^i  ( A  X.  B ) ) )
8 ssid 3624 . . . . . . . 8  |-  A  C_  A
9 ssv 3625 . . . . . . . 8  |-  B  C_  _V
10 xpss12 5225 . . . . . . . 8  |-  ( ( A  C_  A  /\  B  C_  _V )  -> 
( A  X.  B
)  C_  ( A  X.  _V ) )
118, 9, 10mp2an 708 . . . . . . 7  |-  ( A  X.  B )  C_  ( A  X.  _V )
12 sslin 3839 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( A  X.  _V )  ->  ( C  i^i  ( A  X.  B ) )  C_  ( C  i^i  ( A  X.  _V ) ) )
1311, 12ax-mp 5 . . . . . 6  |-  ( C  i^i  ( A  X.  B ) )  C_  ( C  i^i  ( A  X.  _V ) )
14 df-res 5126 . . . . . 6  |-  ( C  |`  A )  =  ( C  i^i  ( A  X.  _V ) )
1513, 14sseqtr4i 3638 . . . . 5  |-  ( C  i^i  ( A  X.  B ) )  C_  ( C  |`  A )
16 rnss 5354 . . . . 5  |-  ( ( C  i^i  ( A  X.  B ) ) 
C_  ( C  |`  A )  ->  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( C  |`  A ) )
1715, 16ax-mp 5 . . . 4  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  ran  ( C  |`  A )
18 sstr 3611 . . . 4  |-  ( ( B  C_  ran  ( C  i^i  ( A  X.  B ) )  /\  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( C  |`  A ) )  ->  B  C_  ran  ( C  |`  A ) )
1917, 18mpan2 707 . . 3  |-  ( B 
C_  ran  ( C  i^i  ( A  X.  B
) )  ->  B  C_ 
ran  ( C  |`  A ) )
20 ssel 3597 . . . . . . 7  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
y  e.  ran  ( C  |`  A ) ) )
21 vex 3203 . . . . . . . 8  |-  y  e. 
_V
2221elrn2 5365 . . . . . . 7  |-  ( y  e.  ran  ( C  |`  A )  <->  E. x <. x ,  y >.  e.  ( C  |`  A ) )
2320, 22syl6ib 241 . . . . . 6  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  ->  E. x <. x ,  y
>.  e.  ( C  |`  A ) ) )
2423ancrd 577 . . . . 5  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
( E. x <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) ) )
2521elrn2 5365 . . . . . 6  |-  ( y  e.  ran  ( C  i^i  ( A  X.  B ) )  <->  E. x <. x ,  y >.  e.  ( C  i^i  ( A  X.  B ) ) )
26 elin 3796 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( C  i^i  ( A  X.  B ) )  <-> 
( <. x ,  y
>.  e.  C  /\  <. x ,  y >.  e.  ( A  X.  B ) ) )
27 opelxp 5146 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2827anbi2i 730 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  C  /\  <. x ,  y >.  e.  ( A  X.  B ) )  <->  ( <. x ,  y >.  e.  C  /\  ( x  e.  A  /\  y  e.  B
) ) )
2921opelres 5401 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( C  |`  A )  <-> 
( <. x ,  y
>.  e.  C  /\  x  e.  A ) )
3029anbi1i 731 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
)  <->  ( ( <.
x ,  y >.  e.  C  /\  x  e.  A )  /\  y  e.  B ) )
31 anass 681 . . . . . . . . 9  |-  ( ( ( <. x ,  y
>.  e.  C  /\  x  e.  A )  /\  y  e.  B )  <->  ( <. x ,  y >.  e.  C  /\  ( x  e.  A  /\  y  e.  B
) ) )
3230, 31bitr2i 265 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  C  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) )
3326, 28, 323bitri 286 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( C  i^i  ( A  X.  B ) )  <-> 
( <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
3433exbii 1774 . . . . . 6  |-  ( E. x <. x ,  y
>.  e.  ( C  i^i  ( A  X.  B
) )  <->  E. x
( <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
35 19.41v 1914 . . . . . 6  |-  ( E. x ( <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
)  <->  ( E. x <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) )
3625, 34, 353bitri 286 . . . . 5  |-  ( y  e.  ran  ( C  i^i  ( A  X.  B ) )  <->  ( E. x <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
3724, 36syl6ibr 242 . . . 4  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
y  e.  ran  ( C  i^i  ( A  X.  B ) ) ) )
3837ssrdv 3609 . . 3  |-  ( B 
C_  ran  ( C  |`  A )  ->  B  C_ 
ran  ( C  i^i  ( A  X.  B
) ) )
3919, 38impbii 199 . 2  |-  ( B 
C_  ran  ( C  i^i  ( A  X.  B
) )  <->  B  C_  ran  ( C  |`  A ) )
407, 39bitr2i 265 1  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   <.cop 4183    X. cxp 5112   ran crn 5115    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  rninxp  5573
  Copyright terms: Public domain W3C validator