| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrnres | Structured version Visualization version Unicode version | ||
| Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.) |
| Ref | Expression |
|---|---|
| ssrnres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3834 |
. . . . 5
| |
| 2 | rnss 5354 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | rnxpss 5566 |
. . . 4
| |
| 5 | 3, 4 | sstri 3612 |
. . 3
|
| 6 | eqss 3618 |
. . 3
| |
| 7 | 5, 6 | mpbiran 953 |
. 2
|
| 8 | ssid 3624 |
. . . . . . . 8
| |
| 9 | ssv 3625 |
. . . . . . . 8
| |
| 10 | xpss12 5225 |
. . . . . . . 8
| |
| 11 | 8, 9, 10 | mp2an 708 |
. . . . . . 7
|
| 12 | sslin 3839 |
. . . . . . 7
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . 6
|
| 14 | df-res 5126 |
. . . . . 6
| |
| 15 | 13, 14 | sseqtr4i 3638 |
. . . . 5
|
| 16 | rnss 5354 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 5 |
. . . 4
|
| 18 | sstr 3611 |
. . . 4
| |
| 19 | 17, 18 | mpan2 707 |
. . 3
|
| 20 | ssel 3597 |
. . . . . . 7
| |
| 21 | vex 3203 |
. . . . . . . 8
| |
| 22 | 21 | elrn2 5365 |
. . . . . . 7
|
| 23 | 20, 22 | syl6ib 241 |
. . . . . 6
|
| 24 | 23 | ancrd 577 |
. . . . 5
|
| 25 | 21 | elrn2 5365 |
. . . . . 6
|
| 26 | elin 3796 |
. . . . . . . 8
| |
| 27 | opelxp 5146 |
. . . . . . . . 9
| |
| 28 | 27 | anbi2i 730 |
. . . . . . . 8
|
| 29 | 21 | opelres 5401 |
. . . . . . . . . 10
|
| 30 | 29 | anbi1i 731 |
. . . . . . . . 9
|
| 31 | anass 681 |
. . . . . . . . 9
| |
| 32 | 30, 31 | bitr2i 265 |
. . . . . . . 8
|
| 33 | 26, 28, 32 | 3bitri 286 |
. . . . . . 7
|
| 34 | 33 | exbii 1774 |
. . . . . 6
|
| 35 | 19.41v 1914 |
. . . . . 6
| |
| 36 | 25, 34, 35 | 3bitri 286 |
. . . . 5
|
| 37 | 24, 36 | syl6ibr 242 |
. . . 4
|
| 38 | 37 | ssrdv 3609 |
. . 3
|
| 39 | 19, 38 | impbii 199 |
. 2
|
| 40 | 7, 39 | bitr2i 265 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 |
| This theorem is referenced by: rninxp 5573 |
| Copyright terms: Public domain | W3C validator |