MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstp Structured version   Visualization version   Unicode version

Theorem sstp 4367
Description: The subsets of a triple. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
sstp  |-  ( A 
C_  { B ,  C ,  D }  <->  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) ) )

Proof of Theorem sstp
StepHypRef Expression
1 df-tp 4182 . . 3  |-  { B ,  C ,  D }  =  ( { B ,  C }  u.  { D } )
21sseq2i 3630 . 2  |-  ( A 
C_  { B ,  C ,  D }  <->  A 
C_  ( { B ,  C }  u.  { D } ) )
3 0ss 3972 . . 3  |-  (/)  C_  A
43biantrur 527 . 2  |-  ( A 
C_  ( { B ,  C }  u.  { D } )  <->  ( (/)  C_  A  /\  A  C_  ( { B ,  C }  u.  { D } ) ) )
5 ssunsn2 4359 . . 3  |-  ( (
(/)  C_  A  /\  A  C_  ( { B ,  C }  u.  { D } ) )  <->  ( ( (/)  C_  A  /\  A  C_  { B ,  C }
)  \/  ( (
(/)  u.  { D } )  C_  A  /\  A  C_  ( { B ,  C }  u.  { D } ) ) ) )
63biantrur 527 . . . . 5  |-  ( A 
C_  { B ,  C }  <->  ( (/)  C_  A  /\  A  C_  { B ,  C } ) )
7 sspr 4366 . . . . 5  |-  ( A 
C_  { B ,  C }  <->  ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C } ) ) )
86, 7bitr3i 266 . . . 4  |-  ( (
(/)  C_  A  /\  A  C_ 
{ B ,  C } )  <->  ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C } ) ) )
9 uncom 3757 . . . . . . . 8  |-  ( (/)  u. 
{ D } )  =  ( { D }  u.  (/) )
10 un0 3967 . . . . . . . 8  |-  ( { D }  u.  (/) )  =  { D }
119, 10eqtri 2644 . . . . . . 7  |-  ( (/)  u. 
{ D } )  =  { D }
1211sseq1i 3629 . . . . . 6  |-  ( (
(/)  u.  { D } )  C_  A  <->  { D }  C_  A
)
13 uncom 3757 . . . . . . 7  |-  ( { B ,  C }  u.  { D } )  =  ( { D }  u.  { B ,  C } )
1413sseq2i 3630 . . . . . 6  |-  ( A 
C_  ( { B ,  C }  u.  { D } )  <->  A  C_  ( { D }  u.  { B ,  C }
) )
1512, 14anbi12i 733 . . . . 5  |-  ( ( ( (/)  u.  { D } )  C_  A  /\  A  C_  ( { B ,  C }  u.  { D } ) )  <->  ( { D }  C_  A  /\  A  C_  ( { D }  u.  { B ,  C } ) ) )
16 ssunpr 4365 . . . . 5  |-  ( ( { D }  C_  A  /\  A  C_  ( { D }  u.  { B ,  C }
) )  <->  ( ( A  =  { D }  \/  A  =  ( { D }  u.  { B } ) )  \/  ( A  =  ( { D }  u.  { C } )  \/  A  =  ( { D }  u.  { B ,  C }
) ) ) )
17 uncom 3757 . . . . . . . . 9  |-  ( { D }  u.  { B } )  =  ( { B }  u.  { D } )
18 df-pr 4180 . . . . . . . . 9  |-  { B ,  D }  =  ( { B }  u.  { D } )
1917, 18eqtr4i 2647 . . . . . . . 8  |-  ( { D }  u.  { B } )  =  { B ,  D }
2019eqeq2i 2634 . . . . . . 7  |-  ( A  =  ( { D }  u.  { B } )  <->  A  =  { B ,  D }
)
2120orbi2i 541 . . . . . 6  |-  ( ( A  =  { D }  \/  A  =  ( { D }  u.  { B } ) )  <-> 
( A  =  { D }  \/  A  =  { B ,  D } ) )
22 uncom 3757 . . . . . . . . 9  |-  ( { D }  u.  { C } )  =  ( { C }  u.  { D } )
23 df-pr 4180 . . . . . . . . 9  |-  { C ,  D }  =  ( { C }  u.  { D } )
2422, 23eqtr4i 2647 . . . . . . . 8  |-  ( { D }  u.  { C } )  =  { C ,  D }
2524eqeq2i 2634 . . . . . . 7  |-  ( A  =  ( { D }  u.  { C } )  <->  A  =  { C ,  D }
)
261, 13eqtr2i 2645 . . . . . . . 8  |-  ( { D }  u.  { B ,  C }
)  =  { B ,  C ,  D }
2726eqeq2i 2634 . . . . . . 7  |-  ( A  =  ( { D }  u.  { B ,  C } )  <->  A  =  { B ,  C ,  D } )
2825, 27orbi12i 543 . . . . . 6  |-  ( ( A  =  ( { D }  u.  { C } )  \/  A  =  ( { D }  u.  { B ,  C } ) )  <-> 
( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) )
2921, 28orbi12i 543 . . . . 5  |-  ( ( ( A  =  { D }  \/  A  =  ( { D }  u.  { B } ) )  \/  ( A  =  ( { D }  u.  { C } )  \/  A  =  ( { D }  u.  { B ,  C }
) ) )  <->  ( ( A  =  { D }  \/  A  =  { B ,  D }
)  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )
3015, 16, 293bitri 286 . . . 4  |-  ( ( ( (/)  u.  { D } )  C_  A  /\  A  C_  ( { B ,  C }  u.  { D } ) )  <->  ( ( A  =  { D }  \/  A  =  { B ,  D }
)  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )
318, 30orbi12i 543 . . 3  |-  ( ( ( (/)  C_  A  /\  A  C_  { B ,  C } )  \/  (
( (/)  u.  { D } )  C_  A  /\  A  C_  ( { B ,  C }  u.  { D } ) ) )  <->  ( (
( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) ) )
325, 31bitri 264 . 2  |-  ( (
(/)  C_  A  /\  A  C_  ( { B ,  C }  u.  { D } ) )  <->  ( (
( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) ) )
332, 4, 323bitri 286 1  |-  ( A 
C_  { B ,  C ,  D }  <->  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by:  pwtp  4431
  Copyright terms: Public domain W3C validator