| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssunsn2 | Structured version Visualization version Unicode version | ||
| Description: The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp 4431. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| Ref | Expression |
|---|---|
| ssunsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4339 |
. . . . 5
| |
| 2 | unss 3787 |
. . . . . . 7
| |
| 3 | 2 | bicomi 214 |
. . . . . 6
|
| 4 | 3 | rbaibr 946 |
. . . . 5
|
| 5 | 1, 4 | syl 17 |
. . . 4
|
| 6 | 5 | anbi1d 741 |
. . 3
|
| 7 | 2 | biimpi 206 |
. . . . . . 7
|
| 8 | 7 | expcom 451 |
. . . . . 6
|
| 9 | 1, 8 | syl 17 |
. . . . 5
|
| 10 | ssun3 3778 |
. . . . . 6
| |
| 11 | 10 | a1i 11 |
. . . . 5
|
| 12 | 9, 11 | anim12d 586 |
. . . 4
|
| 13 | pm4.72 920 |
. . . 4
| |
| 14 | 12, 13 | sylib 208 |
. . 3
|
| 15 | 6, 14 | bitrd 268 |
. 2
|
| 16 | disjsn 4246 |
. . . . . . 7
| |
| 17 | disj3 4021 |
. . . . . . 7
| |
| 18 | 16, 17 | bitr3i 266 |
. . . . . 6
|
| 19 | sseq1 3626 |
. . . . . 6
| |
| 20 | 18, 19 | sylbi 207 |
. . . . 5
|
| 21 | uncom 3757 |
. . . . . . 7
| |
| 22 | 21 | sseq2i 3630 |
. . . . . 6
|
| 23 | ssundif 4052 |
. . . . . 6
| |
| 24 | 22, 23 | bitr3i 266 |
. . . . 5
|
| 25 | 20, 24 | syl6rbbr 279 |
. . . 4
|
| 26 | 25 | anbi2d 740 |
. . 3
|
| 27 | 3 | simplbi 476 |
. . . . . . 7
|
| 28 | 27 | a1i 11 |
. . . . . 6
|
| 29 | 25 | biimpd 219 |
. . . . . 6
|
| 30 | 28, 29 | anim12d 586 |
. . . . 5
|
| 31 | pm4.72 920 |
. . . . 5
| |
| 32 | 30, 31 | sylib 208 |
. . . 4
|
| 33 | orcom 402 |
. . . 4
| |
| 34 | 32, 33 | syl6bb 276 |
. . 3
|
| 35 | 26, 34 | bitrd 268 |
. 2
|
| 36 | 15, 35 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 |
| This theorem is referenced by: ssunsn 4360 ssunpr 4365 sstp 4367 |
| Copyright terms: Public domain | W3C validator |