MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstskm Structured version   Visualization version   Unicode version

Theorem sstskm 9664
Description: Being a part of  ( tarskiMap `  A ). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
sstskm  |-  ( A  e.  V  ->  ( B  C_  ( tarskiMap `  A
)  <->  A. x  e.  Tarski  ( A  e.  x  ->  B  C_  x ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem sstskm
StepHypRef Expression
1 tskmval 9661 . . . 4  |-  ( A  e.  V  ->  ( tarskiMap `  A )  =  |^| { x  e.  Tarski  |  A  e.  x } )
2 df-rab 2921 . . . . 5  |-  { x  e.  Tarski  |  A  e.  x }  =  {
x  |  ( x  e.  Tarski  /\  A  e.  x ) }
32inteqi 4479 . . . 4  |-  |^| { x  e.  Tarski  |  A  e.  x }  =  |^| { x  |  ( x  e.  Tarski  /\  A  e.  x ) }
41, 3syl6eq 2672 . . 3  |-  ( A  e.  V  ->  ( tarskiMap `  A )  =  |^| { x  |  ( x  e.  Tarski  /\  A  e.  x ) } )
54sseq2d 3633 . 2  |-  ( A  e.  V  ->  ( B  C_  ( tarskiMap `  A
)  <->  B  C_  |^| { x  |  ( x  e. 
Tarski  /\  A  e.  x
) } ) )
6 impexp 462 . . . 4  |-  ( ( ( x  e.  Tarski  /\  A  e.  x )  ->  B  C_  x
)  <->  ( x  e. 
Tarski  ->  ( A  e.  x  ->  B  C_  x
) ) )
76albii 1747 . . 3  |-  ( A. x ( ( x  e.  Tarski  /\  A  e.  x )  ->  B  C_  x )  <->  A. x
( x  e.  Tarski  -> 
( A  e.  x  ->  B  C_  x )
) )
8 ssintab 4494 . . 3  |-  ( B 
C_  |^| { x  |  ( x  e.  Tarski  /\  A  e.  x ) }  <->  A. x ( ( x  e.  Tarski  /\  A  e.  x )  ->  B  C_  x ) )
9 df-ral 2917 . . 3  |-  ( A. x  e.  Tarski  ( A  e.  x  ->  B  C_  x )  <->  A. x
( x  e.  Tarski  -> 
( A  e.  x  ->  B  C_  x )
) )
107, 8, 93bitr4i 292 . 2  |-  ( B 
C_  |^| { x  |  ( x  e.  Tarski  /\  A  e.  x ) }  <->  A. x  e.  Tarski  ( A  e.  x  ->  B  C_  x ) )
115, 10syl6bb 276 1  |-  ( A  e.  V  ->  ( B  C_  ( tarskiMap `  A
)  <->  A. x  e.  Tarski  ( A  e.  x  ->  B  C_  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916    C_ wss 3574   |^|cint 4475   ` cfv 5888   Tarskictsk 9570   tarskiMapctskm 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-groth 9645
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-tsk 9571  df-tskm 9660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator