MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmetval Structured version   Visualization version   Unicode version

Theorem stdbdmetval 22319
Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
Assertion
Ref Expression
stdbdmetval  |-  ( ( R  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  if ( ( A C B )  <_  R , 
( A C B ) ,  R ) )
Distinct variable groups:    x, y, A    x, C, y    x, B, y    x, R, y   
x, X, y
Allowed substitution hints:    D( x, y)    V( x, y)

Proof of Theorem stdbdmetval
StepHypRef Expression
1 ovex 6678 . . . 4  |-  ( A C B )  e. 
_V
2 ifexg 4157 . . . 4  |-  ( ( ( A C B )  e.  _V  /\  R  e.  V )  ->  if ( ( A C B )  <_  R ,  ( A C B ) ,  R
)  e.  _V )
31, 2mpan 706 . . 3  |-  ( R  e.  V  ->  if ( ( A C B )  <_  R ,  ( A C B ) ,  R
)  e.  _V )
4 oveq12 6659 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x C y )  =  ( A C B ) )
54breq1d 4663 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x C y )  <_  R  <->  ( A C B )  <_  R ) )
65, 4ifbieq1d 4109 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R )  =  if ( ( A C B )  <_  R ,  ( A C B ) ,  R
) )
7 stdbdmet.1 . . . 4  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
86, 7ovmpt2ga 6790 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  if ( ( A C B )  <_  R ,  ( A C B ) ,  R
)  e.  _V )  ->  ( A D B )  =  if ( ( A C B )  <_  R , 
( A C B ) ,  R ) )
93, 8syl3an3 1361 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  R  e.  V )  ->  ( A D B )  =  if ( ( A C B )  <_  R , 
( A C B ) ,  R ) )
1093comr 1273 1  |-  ( ( R  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  if ( ( A C B )  <_  R , 
( A C B ) ,  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   class class class wbr 4653  (class class class)co 6650    |-> cmpt2 6652    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  stdbdbl  22322
  Copyright terms: Public domain W3C validator