MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdbl Structured version   Visualization version   Unicode version

Theorem stdbdbl 22322
Description: The standard bounded metric corresponding to  C generates the same balls as  C for radii less than  R. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
Assertion
Ref Expression
stdbdbl  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  ( P ( ball `  C ) S ) )
Distinct variable groups:    x, y, C    x, P, y    x, R, y    x, X, y
Allowed substitution hints:    D( x, y)    S( x, y)

Proof of Theorem stdbdbl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpll2 1101 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  R  e.  RR* )
2 simpr1 1067 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  P  e.  X )
32adantr 481 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  P  e.  X )
4 simpr 477 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  z  e.  X )
5 stdbdmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
65stdbdmetval 22319 . . . . . 6  |-  ( ( R  e.  RR*  /\  P  e.  X  /\  z  e.  X )  ->  ( P D z )  =  if ( ( P C z )  <_  R ,  ( P C z ) ,  R ) )
71, 3, 4, 6syl3anc 1326 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( P D z )  =  if ( ( P C z )  <_  R , 
( P C z ) ,  R ) )
87breq1d 4663 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P D z )  <  S  <->  if ( ( P C z )  <_  R ,  ( P C z ) ,  R
)  <  S )
)
9 simplr3 1105 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  S  <_  R )
109biantrud 528 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( S  <_  ( P C z )  <->  ( S  <_  ( P C z )  /\  S  <_  R ) ) )
11 simpr2 1068 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  S  e.  RR* )
1211adantr 481 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  S  e.  RR* )
13 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  C  e.  ( *Met `  X ) )
1413adantr 481 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  C  e.  ( *Met `  X ) )
15 xmetcl 22136 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  X
)  ->  ( P C z )  e. 
RR* )
1614, 3, 4, 15syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( P C z )  e.  RR* )
17 xrlemin 12015 . . . . . . . 8  |-  ( ( S  e.  RR*  /\  ( P C z )  e. 
RR*  /\  R  e.  RR* )  ->  ( S  <_  if ( ( P C z )  <_  R ,  ( P C z ) ,  R )  <->  ( S  <_  ( P C z )  /\  S  <_  R ) ) )
1812, 16, 1, 17syl3anc 1326 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( S  <_  if ( ( P C z )  <_  R ,  ( P C z ) ,  R
)  <->  ( S  <_ 
( P C z )  /\  S  <_  R ) ) )
1910, 18bitr4d 271 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( S  <_  ( P C z )  <->  S  <_  if ( ( P C z )  <_  R ,  ( P C z ) ,  R
) ) )
2019notbid 308 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( -.  S  <_ 
( P C z )  <->  -.  S  <_  if ( ( P C z )  <_  R ,  ( P C z ) ,  R
) ) )
21 xrltnle 10105 . . . . . 6  |-  ( ( ( P C z )  e.  RR*  /\  S  e.  RR* )  ->  (
( P C z )  <  S  <->  -.  S  <_  ( P C z ) ) )
2216, 12, 21syl2anc 693 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P C z )  <  S  <->  -.  S  <_  ( P C z ) ) )
2316, 1ifcld 4131 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  if ( ( P C z )  <_  R ,  ( P C z ) ,  R )  e.  RR* )
24 xrltnle 10105 . . . . . 6  |-  ( ( if ( ( P C z )  <_  R ,  ( P C z ) ,  R )  e.  RR*  /\  S  e.  RR* )  ->  ( if ( ( P C z )  <_  R ,  ( P C z ) ,  R )  < 
S  <->  -.  S  <_  if ( ( P C z )  <_  R ,  ( P C z ) ,  R
) ) )
2523, 12, 24syl2anc 693 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( if ( ( P C z )  <_  R ,  ( P C z ) ,  R )  < 
S  <->  -.  S  <_  if ( ( P C z )  <_  R ,  ( P C z ) ,  R
) ) )
2620, 22, 253bitr4d 300 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P C z )  <  S  <->  if ( ( P C z )  <_  R ,  ( P C z ) ,  R
)  <  S )
)
278, 26bitr4d 271 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P D z )  <  S  <->  ( P C z )  <  S ) )
2827rabbidva 3188 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  { z  e.  X  |  ( P D z )  <  S }  =  { z  e.  X  |  ( P C z )  <  S } )
295stdbdxmet 22320 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
3029adantr 481 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  D  e.  ( *Met `  X ) )
31 blval 22191 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  D ) S )  =  { z  e.  X  |  ( P D z )  < 
S } )
3230, 2, 11, 31syl3anc 1326 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  { z  e.  X  |  ( P D z )  <  S } )
33 blval 22191 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  C ) S )  =  { z  e.  X  |  ( P C z )  < 
S } )
3413, 2, 11, 33syl3anc 1326 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  C
) S )  =  { z  e.  X  |  ( P C z )  <  S } )
3528, 32, 343eqtr4d 2666 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  ( P ( ball `  C ) S ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   RR*cxr 10073    < clt 10074    <_ cle 10075   *Metcxmt 19731   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-psmet 19738  df-xmet 19739  df-bl 19741
This theorem is referenced by:  stdbdmopn  22323  xlebnum  22764
  Copyright terms: Public domain W3C validator