| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stdbdxmet | Structured version Visualization version Unicode version | ||
| Description: The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| stdbdmet.1 |
|
| Ref | Expression |
|---|---|
| stdbdxmet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . . . 5
| |
| 2 | xmetcl 22136 |
. . . . . . 7
| |
| 3 | xmetge0 22149 |
. . . . . . 7
| |
| 4 | elxrge0 12281 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | sylanbrc 698 |
. . . . . 6
|
| 6 | 5 | 3expb 1266 |
. . . . 5
|
| 7 | 1, 6 | sylan 488 |
. . . 4
|
| 8 | xmetf 22134 |
. . . . . . 7
| |
| 9 | 8 | 3ad2ant1 1082 |
. . . . . 6
|
| 10 | ffn 6045 |
. . . . . 6
| |
| 11 | 9, 10 | syl 17 |
. . . . 5
|
| 12 | fnov 6768 |
. . . . 5
| |
| 13 | 11, 12 | sylib 208 |
. . . 4
|
| 14 | eqidd 2623 |
. . . 4
| |
| 15 | breq1 4656 |
. . . . 5
| |
| 16 | id 22 |
. . . . 5
| |
| 17 | 15, 16 | ifbieq1d 4109 |
. . . 4
|
| 18 | 7, 13, 14, 17 | fmpt2co 7260 |
. . 3
|
| 19 | stdbdmet.1 |
. . 3
| |
| 20 | 18, 19 | syl6eqr 2674 |
. 2
|
| 21 | elxrge0 12281 |
. . . . . 6
| |
| 22 | 21 | simplbi 476 |
. . . . 5
|
| 23 | simp2 1062 |
. . . . 5
| |
| 24 | ifcl 4130 |
. . . . 5
| |
| 25 | 22, 23, 24 | syl2anr 495 |
. . . 4
|
| 26 | eqid 2622 |
. . . 4
| |
| 27 | 25, 26 | fmptd 6385 |
. . 3
|
| 28 | id 22 |
. . . . . 6
| |
| 29 | vex 3203 |
. . . . . . 7
| |
| 30 | ifexg 4157 |
. . . . . . 7
| |
| 31 | 29, 23, 30 | sylancr 695 |
. . . . . 6
|
| 32 | breq1 4656 |
. . . . . . . 8
| |
| 33 | id 22 |
. . . . . . . 8
| |
| 34 | 32, 33 | ifbieq1d 4109 |
. . . . . . 7
|
| 35 | 34, 26 | fvmptg 6280 |
. . . . . 6
|
| 36 | 28, 31, 35 | syl2anr 495 |
. . . . 5
|
| 37 | 36 | eqeq1d 2624 |
. . . 4
|
| 38 | eqeq1 2626 |
. . . . . 6
| |
| 39 | 38 | bibi1d 333 |
. . . . 5
|
| 40 | eqeq1 2626 |
. . . . . 6
| |
| 41 | 40 | bibi1d 333 |
. . . . 5
|
| 42 | biidd 252 |
. . . . 5
| |
| 43 | simp3 1063 |
. . . . . . . . 9
| |
| 44 | 43 | gt0ne0d 10592 |
. . . . . . . 8
|
| 45 | 44 | neneqd 2799 |
. . . . . . 7
|
| 46 | 45 | ad2antrr 762 |
. . . . . 6
|
| 47 | 0xr 10086 |
. . . . . . . . . . 11
| |
| 48 | xrltle 11982 |
. . . . . . . . . . 11
| |
| 49 | 47, 23, 48 | sylancr 695 |
. . . . . . . . . 10
|
| 50 | 43, 49 | mpd 15 |
. . . . . . . . 9
|
| 51 | 50 | adantr 481 |
. . . . . . . 8
|
| 52 | breq1 4656 |
. . . . . . . 8
| |
| 53 | 51, 52 | syl5ibrcom 237 |
. . . . . . 7
|
| 54 | 53 | con3dimp 457 |
. . . . . 6
|
| 55 | 46, 54 | 2falsed 366 |
. . . . 5
|
| 56 | 39, 41, 42, 55 | ifbothda 4123 |
. . . 4
|
| 57 | 37, 56 | bitrd 268 |
. . 3
|
| 58 | elxrge0 12281 |
. . . . . . . . . 10
| |
| 59 | 58 | simplbi 476 |
. . . . . . . . 9
|
| 60 | 59 | ad2antrl 764 |
. . . . . . . 8
|
| 61 | 23 | adantr 481 |
. . . . . . . 8
|
| 62 | xrmin1 12008 |
. . . . . . . 8
| |
| 63 | 60, 61, 62 | syl2anc 693 |
. . . . . . 7
|
| 64 | 60, 61 | ifcld 4131 |
. . . . . . . 8
|
| 65 | elxrge0 12281 |
. . . . . . . . . 10
| |
| 66 | 65 | simplbi 476 |
. . . . . . . . 9
|
| 67 | 66 | ad2antll 765 |
. . . . . . . 8
|
| 68 | xrletr 11989 |
. . . . . . . 8
| |
| 69 | 64, 60, 67, 68 | syl3anc 1326 |
. . . . . . 7
|
| 70 | 63, 69 | mpand 711 |
. . . . . 6
|
| 71 | xrmin2 12009 |
. . . . . . 7
| |
| 72 | 60, 61, 71 | syl2anc 693 |
. . . . . 6
|
| 73 | 70, 72 | jctird 567 |
. . . . 5
|
| 74 | xrlemin 12015 |
. . . . . 6
| |
| 75 | 64, 67, 61, 74 | syl3anc 1326 |
. . . . 5
|
| 76 | 73, 75 | sylibrd 249 |
. . . 4
|
| 77 | 36 | adantrr 753 |
. . . . 5
|
| 78 | simpr 477 |
. . . . . 6
| |
| 79 | vex 3203 |
. . . . . . 7
| |
| 80 | ifexg 4157 |
. . . . . . 7
| |
| 81 | 79, 23, 80 | sylancr 695 |
. . . . . 6
|
| 82 | breq1 4656 |
. . . . . . . 8
| |
| 83 | id 22 |
. . . . . . . 8
| |
| 84 | 82, 83 | ifbieq1d 4109 |
. . . . . . 7
|
| 85 | 84, 26 | fvmptg 6280 |
. . . . . 6
|
| 86 | 78, 81, 85 | syl2anr 495 |
. . . . 5
|
| 87 | 77, 86 | breq12d 4666 |
. . . 4
|
| 88 | 76, 87 | sylibrd 249 |
. . 3
|
| 89 | 60, 67 | xaddcld 12131 |
. . . . . . 7
|
| 90 | xrmin1 12008 |
. . . . . . 7
| |
| 91 | 89, 61, 90 | syl2anc 693 |
. . . . . 6
|
| 92 | 89, 61 | ifcld 4131 |
. . . . . . 7
|
| 93 | 60, 61 | xaddcld 12131 |
. . . . . . 7
|
| 94 | xrmin2 12009 |
. . . . . . . 8
| |
| 95 | 89, 61, 94 | syl2anc 693 |
. . . . . . 7
|
| 96 | xaddid2 12073 |
. . . . . . . . 9
| |
| 97 | 61, 96 | syl 17 |
. . . . . . . 8
|
| 98 | 47 | a1i 11 |
. . . . . . . . 9
|
| 99 | 58 | simprbi 480 |
. . . . . . . . . 10
|
| 100 | 99 | ad2antrl 764 |
. . . . . . . . 9
|
| 101 | xleadd1a 12083 |
. . . . . . . . 9
| |
| 102 | 98, 60, 61, 100, 101 | syl31anc 1329 |
. . . . . . . 8
|
| 103 | 97, 102 | eqbrtrrd 4677 |
. . . . . . 7
|
| 104 | 92, 61, 93, 95, 103 | xrletrd 11993 |
. . . . . 6
|
| 105 | oveq2 6658 |
. . . . . . . 8
| |
| 106 | 105 | breq2d 4665 |
. . . . . . 7
|
| 107 | oveq2 6658 |
. . . . . . . 8
| |
| 108 | 107 | breq2d 4665 |
. . . . . . 7
|
| 109 | 106, 108 | ifboth 4124 |
. . . . . 6
|
| 110 | 91, 104, 109 | syl2anc 693 |
. . . . 5
|
| 111 | 67, 61 | ifcld 4131 |
. . . . . . 7
|
| 112 | 61, 111 | xaddcld 12131 |
. . . . . 6
|
| 113 | xaddid1 12072 |
. . . . . . . 8
| |
| 114 | 61, 113 | syl 17 |
. . . . . . 7
|
| 115 | 65 | simprbi 480 |
. . . . . . . . . 10
|
| 116 | 115 | ad2antll 765 |
. . . . . . . . 9
|
| 117 | 50 | adantr 481 |
. . . . . . . . 9
|
| 118 | breq2 4657 |
. . . . . . . . . 10
| |
| 119 | breq2 4657 |
. . . . . . . . . 10
| |
| 120 | 118, 119 | ifboth 4124 |
. . . . . . . . 9
|
| 121 | 116, 117, 120 | syl2anc 693 |
. . . . . . . 8
|
| 122 | xleadd2a 12084 |
. . . . . . . 8
| |
| 123 | 98, 111, 61, 121, 122 | syl31anc 1329 |
. . . . . . 7
|
| 124 | 114, 123 | eqbrtrrd 4677 |
. . . . . 6
|
| 125 | 92, 61, 112, 95, 124 | xrletrd 11993 |
. . . . 5
|
| 126 | oveq1 6657 |
. . . . . . 7
| |
| 127 | 126 | breq2d 4665 |
. . . . . 6
|
| 128 | oveq1 6657 |
. . . . . . 7
| |
| 129 | 128 | breq2d 4665 |
. . . . . 6
|
| 130 | 127, 129 | ifboth 4124 |
. . . . 5
|
| 131 | 110, 125, 130 | syl2anc 693 |
. . . 4
|
| 132 | ge0xaddcl 12286 |
. . . . 5
| |
| 133 | ovex 6678 |
. . . . . 6
| |
| 134 | ifexg 4157 |
. . . . . 6
| |
| 135 | 133, 23, 134 | sylancr 695 |
. . . . 5
|
| 136 | breq1 4656 |
. . . . . . 7
| |
| 137 | id 22 |
. . . . . . 7
| |
| 138 | 136, 137 | ifbieq1d 4109 |
. . . . . 6
|
| 139 | 138, 26 | fvmptg 6280 |
. . . . 5
|
| 140 | 132, 135, 139 | syl2anr 495 |
. . . 4
|
| 141 | 77, 86 | oveq12d 6668 |
. . . 4
|
| 142 | 131, 140, 141 | 3brtr4d 4685 |
. . 3
|
| 143 | 1, 27, 57, 88, 142 | comet 22318 |
. 2
|
| 144 | 20, 143 | eqeltrrd 2702 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-xmet 19739 |
| This theorem is referenced by: stdbdmet 22321 stdbdbl 22322 stdbdmopn 22323 |
| Copyright terms: Public domain | W3C validator |